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Abstract: Ecological security is an important research topic, especially urban ecological security.
As highly populated eco-systems, cities always have more fragile ecological environments. However,
most of the research on urban ecological security in literature has focused on evaluating current or
past status of the ecological environment. Very little literature has carried out simulation or prediction
of future ecological security. In addition, there is even less literature exploring the urban ecological
environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban
ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach.
First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban
ecological security. Then, based on the evaluation results, we imported the geographically weighted
regression (GWR) concept into the CA model to simulate and predict urban ecological security.
We applied the improved CA approach in a case study—simulating and predicting urban ecological
security for the city of Wuhan in Central China. By comparing the simulated ecological security
values from 2010 using the improved CA model to the actual ecological security values of 2010, we got
a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or
predict well future development of ecological security in Wuhan. Based on the prediction results
for 2020, we made some policy recommendations for each district in Wuhan.

Keywords: urban ecological security; simulation and prediction; pressure-state-response (PSR);
cellular automata (CA); geographically weighted regression (GWA)

1. Introduction

Ecological security refers to a non-threatened state [1–3], which may include the state of human
life, health, well-being, basic rights, livelihood resources, necessary resources, social order, and human
ability to adapt to environmental changes. Ecological security reflects the degree of ecosystem integrity
and health [1], and it may provide guarantee for sustainability of an eco-economic system [4]. Ecological
security research began in the last century [5–7]. Important literature on this concept includes the
“Ecological risk assessment outline” published by the United States Environmental Protection [8] and
the “Global vulnerability assessment framework for environmental risk” proposed by Clark et al. [9].
Ecological security is a concept opposite to ecological risk. Ecological security measures the safeguard
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of ecological systems while ecological risk assesses the danger or destruction of ecological systems.
However ecological security and ecological risk are related. In fact, parts of the concept of ecological
security come from ecological risk [10–12]. Because many ecological disasters or degradation are
caused by human activities, measurement of ecological security should represent the capability of
human activities. Ecological security may be assessed using an indicator system for environmental
pressures or degradation.

Urban ecological security is an important research topic [13]. The urban area, as the center
of socio-economic development, is a highly populated ecological system and is more fragile in
terms of ecological security [2,4,14]. It is, therefore, imperative to study urban ecological security.
In addition, studying urban ecological security may benefit for carrying out efficient environmental
management [15]. With increasing concerns over urban ecological security, many methods have
been proposed in the literature for assessing urban ecological security. These methods mainly
include mathematical models, system dynamics methods, ecological footprint methods [16], and
landscape ecology methods [15,17,18]. The commonly used mathematical model methods include the
pressure-state-response (PSR) model, the comprehensive index method [19], the analytic hierarchy
process method [20,21], the gray correlation degree method [22], the matter element evaluation method,
and the principal component projection method. However, some of these methods, such as the
comprehensive index methods and ecological footprint methods have limitations in the study of urban
ecological security. These methods may be good at evaluating the status of an administrative region,
but they cannot reflect the dynamic process of the ecological security change, especially at a fine scale.
Among these mathematical methods, the PSR model for human and environmental systems [23–26],
which was jointly developed by the United Nations Economic Cooperation and Development (OECD)
and the United Nations Environment Program (UNEP), and the comprehensive evaluation index
system established by U.S. Environmental Protection Agency (USEPA) [27] are particularly important.

However, most of the research on urban ecological security using the aforementioned methods
focused on evaluating current or past status of the ecological environment. Very few studies in the
literature have been carried out to simulate or predict future changes in urban ecological security.
Nevertheless, predicting future changes in urban ecological security is important [28,29]. The predicted
change of urban ecological security could be used to make reasonable environmental policies for urban
sustainability development [30–32]. The predicted change of urban ecological security could also
be useful for urban planners to develop more realistic urban development plans. However, there
is a lack of literature in simulating or predicting future changes of urban ecological security. Based
on our best knowledge, we only found a couple of publications in literature for forecasting urban
ecological security. For example, Gong et al. [28] and Yang et al. [29] forecasted urban ecological
security using the classical cellular automata (CA) models. However, the classical CA models consider
only short-range spatial dependence and do not consider long-range spatial dependence (e.g., not
immediately connected neighbor cells but located far away cells) [33]. Therefore, it is difficult to
make an accurate simulation or prediction of the dynamic urban ecological security changes among
the neighborhoods.

In addition, there is little literature exploring the urban ecological environment at a fine scale.
In most existing literature, urban ecological security was studied at coarse scales (global, regional,
city, or county levels) [34,35]. In those studies, a whole city or a county was given only one security
value [21,36]. It is, therefore, impossible to figure out how things are going on inside the city [33].
Nevertheless, urban areas are heterogeneous [37]. Urban ecological security may be different at
different locations in the fine scales such as district level. It is, therefore, improper to treat the city as
homogeneous and give the whole city one urban ecological security value. One security value cannot
represent the uneven status of ecological security inside a city. Different districts or neighborhoods in
a city may have different ecological security values. Therefore, we need to simulate urban ecological
security values at a fine scale to give us more information about the heterogeneity of a city. This may
be used for better ecological understanding of integrated human-natural urban systems and undertake
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wise urban planning. Compared to the coarse scales such as city scale, a fine scale could help to find
out the uneven status of ecological security inside a city and could give more information about the
heterogeneous ecological security inside a city.

To overcome these limitations and fill-in the literature gaps, in this study, we simulated and
predicted urban ecological security at a fine scale (district level) using an improved CA approach to
better understand spatial heterogeneity of urban ecosystems. There are two major new contributions
of the improved CA approach. First, we used the pressure-state-response (PSR) method based on
grid-scale data to evaluate urban ecological security. We considered urbanization as the most significant
driving force causing ecological and environmental problems. We carefully quantified the ecological
status of the urbanization areas, because the biggest impetus to the ecological security problem is
the increased urbanization processes. To better quantify urban ecological security, we used three
dimensions to characterize urban growth. The three dimensions include urban growth degree (UGD),
urban growth capacity (UGC), and urban growth pattern (UGP). We evaluated ecological security states
from the view of environmental structure, ecological function value, and resilience of the ecosystem.

Second, in simulating and predicting the urban ecological security process, we extended the
classical CA model by introducing the geographic weighting regression (GWR) concept into the
transformation rules of the classical CA model. GWR can take into account spatial variation of the
sampling unit [38], therefore, it may make simulation of the dynamic urban ecological security changes
among different neighborhoods more accurate.

We applied the improved CA approach in a case study—simulating and predicting urban
ecological security for the city of Wuhan of Central China. Through the case study, we aimed to
verify the potential of the improved CA method for more accurately simulating and predicting urban
ecological security.

2. Materials and Methods

2.1. Study Area

The city of Wuhan is one of the fastest growing cities in central China, located in the middle
reaches of the Yangtze River (see Figure 1). It is the capital of Hubei Province. Wuhan city constitutes
seven districts and has a total area of 8549 km2, of which 39.27% consists of plains and 18.17% is hilly
and mountainous regions. Wuhan has experienced rapid urbanization and a significant economic
growth since last century. From 2005 to 2010, the urban area expanded to 552.61 km2 (Wuhan Municipal
Bureau of Statistics 2005, 2010). Its population grew from 8.58 million to 10.61 million and its economy
expanded from 226.12 billion to 1090.56 billion yuan. The city has been witnessed an obvious and
rapid urbanization.
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Figure 1. Location of the study area. 

2.2. Data Sources 

Land use data were mainly derived from remotely sensed images. The remotely sensed images 
include two multi-spectral Landsat MSS/TM/ETM+ images in the years 2005 and 2010. The resolution 
of the Landsat MSS/TM/ETM+ images is 30 m. The images were downloaded from the U.S. Geological 
Survey (USGS). To ensure accuracy of the image classification results, all the selected images are 
cloudless and with thick vegetation coverage. Before classification, all the images and other 
Geographic Information System (GIS) data were geometrically rectified to the World Geodetic 
System-1984 Coordinate System (WGS-84) and the Universal Transverse Mercator coordinate system. 
In total, 90 ground control points were selected as supplementary data. We did the classification 
using the maximum likelihood method. According to natural ecological and land use attributes, land 
uses/covers from remotely sensed images were always classified into six types. However, grassland 
has a very small proportion in Wuhan. The images were, therefore, classified into other five types of 
land use/cover, namely construction land, forest, farmland, water, and bare land. Meanwhile, we 
randomly selected 200 training samples with sufficient information on the spectral characteristics for 
each land use type. In addition, we selected 100 field points for checking classification accuracy. The 
overall classification accuracy values for the images are from 81.41% to 88.00%, and the kappa 
coefficient values are from 0.77 to 0.85, which indicate a high classification accuracy [39,40]. Based on 
the classification results, the proportions of construction land, forest, farmland, water, and bare land 
in Wuhan in 2010 are 7.78%, 8.34%, 61.99%, 21.40%, and 0.49%, respectively. Population data were 
collected from the fifth census and the sixth census in China at the street level. Socio-economic data 
mainly include national and regional planning documents and policies, which were downloaded 
from the government website [41]. 

  

Figure 1. Location of the study area.

2.2. Data Sources

Land use data were mainly derived from remotely sensed images. The remotely sensed images
include two multi-spectral Landsat MSS/TM/ETM+ images in the years 2005 and 2010. The resolution
of the Landsat MSS/TM/ETM+ images is 30 m. The images were downloaded from the U.S. Geological
Survey (USGS). To ensure accuracy of the image classification results, all the selected images are
cloudless and with thick vegetation coverage. Before classification, all the images and other Geographic
Information System (GIS) data were geometrically rectified to the World Geodetic System-1984
Coordinate System (WGS-84) and the Universal Transverse Mercator coordinate system. In total,
90 ground control points were selected as supplementary data. We did the classification using
the maximum likelihood method. According to natural ecological and land use attributes, land
uses/covers from remotely sensed images were always classified into six types. However, grassland
has a very small proportion in Wuhan. The images were, therefore, classified into other five types
of land use/cover, namely construction land, forest, farmland, water, and bare land. Meanwhile, we
randomly selected 200 training samples with sufficient information on the spectral characteristics
for each land use type. In addition, we selected 100 field points for checking classification accuracy.
The overall classification accuracy values for the images are from 81.41% to 88.00%, and the kappa
coefficient values are from 0.77 to 0.85, which indicate a high classification accuracy [39,40]. Based on
the classification results, the proportions of construction land, forest, farmland, water, and bare land
in Wuhan in 2010 are 7.78%, 8.34%, 61.99%, 21.40%, and 0.49%, respectively. Population data were
collected from the fifth census and the sixth census in China at the street level. Socio-economic data
mainly include national and regional planning documents and policies, which were downloaded from
the government website [41].
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2.3. Methods

2.3.1. The Flow Chart of the Methods

The methods include two main components: evaluation of urban ecological security using the
PSR model and simulation and prediction of ecological security using the CA model with the GWR
concept. Figure 2 illustrates the flow chart of the methods. The procedure of the methods is introduced
as follows:

Step 1: We evaluated the ecological security classes of 2005 and 2010 using the PSR model.
Step 2: We used the data of 2005 to conduct a five-year simulation based on the CA rules. We obtained
the simulated result of 2010 based on the five-year simulation.
Step 3: We compared the simulated result of 2010 and the evaluated result of 2010 to verify the
simulation accuracy in the second step.
Step 4: We repeated step 2 and step 3 until a satisfactory level of accuracy was obtained in step 3. Then
we recorded the CA rules of the simulation. The total number of the iterations of the 5-year simulation
was recorded as N.
Step 5: We then obtained the predicted result for 2020, which is a 15-year simulation, by using the rules
obtained in step 4. We took 3N as the total number of iterations in this 15-year simulation.
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2.3.2. PSR Evaluation Model

PSR model is a comprehensive evaluation model for environmental problems proposed by the
United Nations Economic Cooperation and Development (OECD). It is composed of the pressure
index for ecological environment problems, state index for eco-environment status, and response
index for social and economic measures that quantify human’s response to ecological problems.
The pressure index consists of three indicators: urban growth degree (UGD) [29], urban growth
capacity (UGC) [42–48], and urban growth pattern (UGP) [49–51]. The ecological security status of an
ecosystem was considered from three aspects: ecological function, ecological structure, and ecological
resilience [52]. In order to make the research scale more refined and better reflect ecological state
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of the administrative units, the indicators of these three aspects were chosen at landscape scale [53].
The landscape ecological function (LEF) was assessed mainly based on the ecological service values.
The most frequently used method proposed by Costanza et al. [54] and Xie et al. [55] was used to
measure the ecological service values for different land use types in this study. The landscape ecological
structure (LES) was measured using (1) Shannon’s diversity index (SHDI), which measures the number
of different land cover classes present; (2) the area-weighted plots fractal dimension index that reflects
shape complexity across a range of spatial scales; and (3) modified Simpson’s evenness index, which
ensures an even distribution of areas among patch types [51].

Landscape ecological resilience (LER) is an important factor for sustainability of regional ecology.
LER measures the disturbance that an ecosystem can bear until its characteristics change [56]. In this
study, we used the fragility index to measure this disturbance. It is calculated by the inverse of number
of patches per unit area (PD). The 8-way neighbors method was used to define patches that can well
represent the ecological resilience of a region [52].

The ecological security responses were interpreted by policy measures such as ecological zoning
and environmental plans. From 2005 to 2010, the specific ecological responses of Wuhan City included
“ecological bottom line”, “ecological development area”, “prospective ecological area”, “tricyclic
rectification area”, and “urban concentrated construction area”.

All of the aforementioned landscape indices were calculated using the software Fragstats [57,58].
Delphi method was used to assign the weight for each index. Compared to the objective weight
allocation methods, Delphi method can better reflect the regional differences, and is more in line with
the objective of this study so this method was employed. Considering the mechanism of the PSR
model and the richness of the data, we assigned the state a weight of 0.5, which can better display the
ecological security of Wuhan city. Since both the UGD and UGC in the pressure part and LEF and
LES in the state part played important roles in the evaluation of urban ecological security, they were
assigned higher weights. Table 1 lists the specific PSR evaluation indices and their weights.

Before performing the evaluation, the original data of different dimensions were standardized.
The extremum standardization method was used for this purpose.

Table 1. PSR evaluation indices and their weights. UGD: urban growth degree; UGC: urban
growth capacity; UGP: urban growth pattern; LEF: landscape ecological function; LES: landscape
ecological structure; LER: landscape ecological resilience; P: ecological pressure; S: ecological state;
R: ecological response.

P-S-R Criteria Indices

Names Weights Names Weights Names Weights

Pressure 0.3

UGD 0.5 Proportion of construction land 1.0

UGC 0.3

Population Density 0.4
Shortest distances to traffic

(road/railway/airport)
0.2

(0.6/0.2/0.2)
Distances to geometric centers 0.1

Distances to commercial centers 0.3

UGP 0.2
Aggregated/linear growth 0.25

Leapfrog growth 0.75

State 0.5

LEF 0.4 Ecological service values 1.0

LES 0.4

Shannon diversity 0.2
Area-weighted plots fractal

dimension index 0.4

Patch density 0.4

LER 0.2 The fragility index 1.0

Response 0.2 R 1.0 Ecological zoning and
environmental plans 1.0
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2.3.3. GWR-Based Cellular Automata (CA) Model

Cellular automata (CA) was a commonly used model for simulating and predicting urban
growth [42,58,59]. CA models can take into account dynamic changes of a city caused by complex
factors such as nature and socio-economy, and use simple rules to simulate the complicated temporal
and spatial dynamic processes [60–62]. In addition, it has the advantage of easily integrating itself
with high-resolution remotely sensed images and geographic information systems [63]. This makes it
popular for simulating urban dynamic changes. Like general urban dynamic change processes, urban
ecological security could be described as a synthesis of components of coupled human and natural
ecosystems. Urban ecological security exhibits complex spatial and temporal processes. Therefore,
urban ecological security could be simulated using CA models.

The CA simulation model used in this paper is based on the concept of GWR. The cellular
automata is composed of five basic elements: cell, cell space, neighbor, transformation rules, and
time sets. The neighborhood function is the core component of CA’s conversion rules, which embody
the essence of CA’s “bottom-up” self-organization evolution. The classical CA algorithms usually
employ the traditional global regression statistics such as a logistics regression model to calculate
the conversion rules. There is, however, a limitation in using the global regression: the estimated
parameters using the global logistics regression model are just mean values of the explanatory variables.
The global parameters cannot reflect spatial heterogeneity of the relationships between the dependent
variable and the explanatory spatial variables. Based on the first law of geography, near objects are
more related than distant objects. Therefore, the explanatory variables may have different degrees of
influence on conversion rules for different geographical locations. The conversion rules may not be a
trend distribution with a single spatial structure. They may have spatial instability.

To reflect spatial instability in conversion among different land use types, we employed a local
regression model—GWR—instead of the global logistics regression model to calculate the conversion
rules. GWR is an extension of the traditional multiple linear regression toward a local regression.
The regression coefficients of GWR are specific to a location rather than being global estimates [64,65].
The local estimation of the regression coefficients of GWR is expressed by the following equation:

yi = β0(mi, ni) +
n

∑
j=1

β j(mi, ni)xij + εi (1)

where (mi, ni) is the spatial location of the ith observation and β j(mi, ni) is the value of the jth parameter
at point location i. The regression parameters of this equation are estimated at each location i(mi, ni).

GWR was specifically designed to deal with the spatial non-stationarity of regression coefficients
between the dependent variable and explanatory variables by measuring those coefficients locally using
local data [66–68]. GWR has capability of incorporating various auxiliary variables with spatially varied
correlation coefficients. The GWR concept, therefore, may more accurately reflect the characteristics of
spatial heterogeneity of ecological dynamic processes. Hence, in the processes of deciding conversion
rules, we used GWR instead of global logistics regression to obtain cell conversion probability.
We pplied the GWR in the CA rules mainly for calculating the probability from one assigned class to
other classes. We first used the GWR models to find out relationships between a cell state value and
each explanatory variable over space. Based on the relationships we then calculated the conversion
probability of each cell to one specified type at each spatial position using the following formula:

pi =
eyi

1.0 + eyi
(2)

where pi represents the transition probability to one cell state value at position i, and yi is the regression
coefficient equation for position i that was obtained by GWR.

In order to combine with the CA model, it is necessary to give one specific probability for
each spatial location. We used the concept of roulette wheel to decide which class would be
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selected substantially based on the aforementioned calculated probability values. At the same time,
we also considered whether or not the selected class values would satisfy the pre-set cell transition
probability values.

We forecasted the ecological security status and patterns of 2020 based on the ecological security
levels of 2005 and 2010 using the GWR tool in ArcGIS 10.2 software (Environmental Systems Research
Institute, Inc., Redlands, CA, USA) [69]. We took the ecological security level as the dependent variable
and the indicators calculated in the aforementioned PSR evaluation as the independent variables to
obtain the regression coefficients of each variable. Taking simulation of the urban ecological security
of 2005–2010 for example, to simulate ecological security status in 2010, we used the number of
ecological evaluation classes in 2010 as the termination condition based on the ecological security
patterns of 2005. In the process of cell conversion iterations, we first estimated the probability of the
currently iterated cell that would turn to each ecological security class. We then determined a class by
the method of roulette wheel and the judgement about whether or not the conversion probability of
the class satisfied the pre-set cell transition probability. If it satisfied, then the cell would be turned to
that class. We stopped the iteration after all of the ecological security classes were satisfied. The total
number of iterations was recorded as N. For forecasting the urban ecological security of 2020, we took
3N as the total number of iterations from the ecological security patterns of 2005.

3. Results and Discussion

3.1. PSR Evaluation

The PSR evaluation results of ecological security values were taken into account of ecological
pressure, ecological state, and ecological response. The evaluated ecological security values are
distributed in the range of 0–0.7. For a better view, we divided the range into five levels, from Class 1 to
Class 5. If a value is less than 0.15, the grid cell will be classified into Class 1. Class 1 means a location
with the lowest security. If a value belongs to the range from 0.15 to 0.3, the location will be classified
into Class 2. Similarly, Class 3 has values ranging from 0.3 to 0.4. A cell location with Class 3 indicates
that it is located at the area with the mid-security level. Class 4 has values ranging from 0.4 to 0.5.
The highest level of the urban ecological security is Class 5, which has values greater than 0.5.

3.1.1. Evaluation Results of 2005 and 2010

Table 2 and Figure 3 show the evaluation results of ecological security in 2005 and 2010. From
these results, it can be seen that the ecological security in 2010 has an obvious improvement compared
to that in 2005. Class 1 and Class 2 in 2010 represent decreased percentages compared to those in 2005,
and there is increase in areas of Class 4 and Class 5 in 2010 compared to 2005.

Table 2. The evaluation results of ecological security in 2005 and 2010.

Evaluation Results of 2005 Evaluation Results of 2010

Areas (km2) Percentages (%) Areas (km2) Percentages (%)

CLASS 1 141.90 1.68 47.46 0.56
CLASS 2 854.46 10.09 581.47 6.87
CLASS 3 4753.35 56.11 4568.95 53.98
CLASS 4 1603.92 18.93 1849.09 21.85
CLASS 5 1117.71 13.19 1416.83 16.74
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For the administrative areas, in Figure 4, the ecological conditions in 2005 are similar in the districts
of Huangpi, Jiangxia, Xinzhou, Dongxihu, Caidian and Hannan: they all have the largest proportion
of Class 3, then followed by Class 4 and Class 5. This indicates good ecological conditions in the
administrative areas. Hanyang, Jiangan, Jianghan, Qiaokou, and Qingshan Districts belong to the poor
ecological security areas, because of the larger proportions of Class 2 and Class 1. Wuchang District also
has a large proportion of Class 2 and Class 1, but the areas belonging to Class 4 and Class 5 in Wuchang
are not small. Wuchang District is therefore noted as a district with internal heterogeneity. The areas of
Class 1, which indicates the worst ecological security, are mainly distributed in Hongshan, Jianghan,
Jiangan, and Qingshan Districts. There have been great changes in overall ecological conditions in 2010
compared to those in 2005. However, the ecological conditions in each administration district have not
shown great changes. The ecological conditions in Huangpi, Jiangxia, Xinzhou, Dongxihu, Caidian
and Hannan Districts improved. These districts have ecological security levels above the average.
Jianghan, Qiaokou, and Qingshan Districts have poor ecological security conditions. The number of
the districts with high internal heterogeneity in 2010 increased from one to three districts, including
Hanyang, Jiangan, and Wuchang Districts. The areas with the worst ecological security conditions are
mainly located in Jiangan, Qiaokou, Jianghan, and Hongshan Districts.
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Figure 4. The distributions of ecological security classes in 2005 and 2010.

3.1.2. Discussion of the Changes from 2005 to 2010

Figure 5 shows the changes of ecological security from 2005 to 2010. The region with red color
means an increase in ecological security level, and the region with blue color means a decrease in
ecological security level. From the final ecological security evaluation results of 2005 and 2010, we can
see that the ecological environment in the central city has decreased slightly during that five-year
period. In the central city (circle A in the figure), the ecological environment remains unchanged
or just decreases slightly. From the edge of the central city to the suburban areas, most places have
an increased ecological security. In the outskirts of the city, the ecological security situation has
shown a certain degree of reduction. This is especially true for Xinzhou district and Hannan Districts
(circles C1 and C2).
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Most areas in the 13 administrative districts also retain unchanged ecological conditions.
For example, more than 80% of the areas in Wuchang and Jianghan Districts maintain their original
ecological security levels. Except for Hannan District, the other 12 districts have enhanced conditions
as the second largest proportion. In total 16.76% of the areas in the Hannan District have weakened
ecological conditions while only 11.41% of areas in that district have enhanced conditions. Hannan
District is the only district that has a larger proportion of areas with weakened conditions than areas
with enhanced conditions. There are relatively large ecological security-enhanced areas in Jiangxia,
Huangpi, Xinzhou, Caidian, Hongshan and Dongxihu Districts. The proportions of enhanced areas in
Hongshan and Qingshan Districts are the two highest proportions in all of the districts, at 39.27% and
38.21%, even if their enhanced areas are not as large as those in the previously mentioned districts
because of their small total district areas. Except for Hongshan and Qingshan Districts, Hanyang and
Dongxihu Districts have enhanced proportions larger than 30%.



Int. J. Environ. Res. Public Health 2017, 14, 643 12 of 20

To find out the reason for ecological security changes from 2005 to 2010 in Wuhan, we analyzed
the urban ecological security from the perspectives of ecological pressure (P), ecological state (S),
and ecological response (R), respectively. Figure 6 illustrates the P/S/R changes from 2005 to 2010.
As shown in Figure 6, the overall ecological environment pressure of Wuhan has significantly increased
from 2005 to 2010, and only small areas around the main city have decreased ecological pressure.
The ecological pressure in north Huangpi District and northeast Xinzhou District has little change.
The areas of ecological improvement are mainly located in the southern part of Huangpi District and
some areas in Qingshan, Hongshan, and Dongxihu Districts. The northeastern part of Wuhan city
that belongs to the Xinzhou area and the southwest part that belongs to the Hannan District show a
weakened ecological environment.

The ecological state basically remained unchanged from 2005 to 2010, and the ecological response
was not significant either. There is only a slight decline of the ecological security in the central city.
Nevertheless, the construction expansion from the city center to the surrounding areas of the city
was significant, which caused most of the surrounding urban areas to have increased ecological
environment pressure. The ecological responses in these areas were the most significant. However,
the ecological security state of these areas remained basically unchanged or was even slightly enhanced.
This is the main ecological security improvement in Wuhan. The ecological response in the suburb
areas was small. If combined with urbanization, the ecological security situation remained basically
unchanged or slightly decreased from 2005 to 2010.

We used expert knowledge and a literature review to find out the important drivers of ecological
security changes in Wuhan. We found that the better ecological planning management and policies
greatly accounted for ecological security changes of Wuhan City from 2005 to 2010. The changes in
urban planning and land use policies were linked to modifications of landscapes and ecosystems in
Wuhan. Good planning, management, and policies played an important role in driving the security
changes. These planning management and policies were mainly applied to the outer ring areas around
the main urban area, which include Huangpi, Dongxihu, Caidian, Jiangxia, Xinzhou, Hongshan
Districts, and the eastern part of Qingshan District. Based on the expert knowledge and literature
review we also found that the ecological security environment changes during 2005–2010 resulted from
comprehensive multi-factors such as social, political and economic factors. For example, population
growth and changing economic conditions were two causes of ecological security change. Urbanization
and extended peri-urban settlement threatened various ecosystem processes and drove ecological
security change from 2005 to 2010. Rapid economic development and construction efforts in Wuhan
led to major ecological security changes from 2005 to 2010. In general, Wuhan has undergone rapid
development period in recent years, especially in the central city, where development and construction
efforts continued to increase in its main areas. This resulted in a widespread ecological pressure.
However, even with the wide and fast development of the city, there was no sharp decline of the
ecological state.
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3.2. The Simulation by the Proposed CA Model

We used the proposed CA model with the GWR concept to simulate the ecological security
situation in 2010 based on the ecological security situation in 2005. We then compared and verified
the simulation results with the actual ecological security values in 2010. Kappa coefficient statistics
were used to measure the simulation results. The calculated kappa coefficient is 0.756, which indicates
that the simulation results are good and the proposed CA model can be used to predict future
ecological security.

The evaluated ecological security results in 2010 and the simulated ecological security results in
2010 are shown in Table 3 and Figure 7. From Figure 7, it can be seen that the proportion of each class
in the simulated results in 2010 is roughly the same as the actually evaluated results in 2010. From
Table 2 it can be seen that the areas with a fair ecological security in both the evaluated results and
the simulated results still occupy the largest proportion. However, Class 4 occupies 12.80% in the
simulated results and 21.85% in the evaluated results. Class 4 has the largest difference among the
five classes. Only the simulated areas of this class are smaller than the actual areas, and the simulated
areas of the other four classes are larger than the actual areas.
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Table 3. The simulated and evaluated ecological security results in 2010.

Simulation Results in 2010 Actual Evaluation Results in 2010

Areas (km2) Percentages (%) Areas (km2) Percentages (%)

CLASS 1 228.86 2.70 47.46 0.56
CLASS 2 694.61 8.21 581.47 6.87
CLASS 3 4850.02 57.30 4568.95 53.98
CLASS 4 1083.58 12.80 1849.09 21.85
CLASS 5 1607.78 18.99 1416.83 16.74

3.3. Prediction Results of 2020

We used the proposed CA model to forecast the ecological security situation of Wuhan in 2020.
Figure 8 illustrates the predicted results of the ecological security in 2020. As shown in the figure,
areas with comparative insecurity (Class 1 and Class 2) are projected to be more concentrated by 2020,
especially in Jianghan, Jiangan and Qiaokou Districts. Both of Class 1 and Class 2 occupy more than
70% of the administrative areas in these three districts, and they are the major classes in these three
districts. Hanyang District and Wuchang District belong to the areas with a low ecological security,
because the proportions with ecological unsafe areas in these two districts are larger than those with
secure areas. Caidian, Huangpi, Xinzhou, and Jiangxia Districts belong to the districts with good
ecological conditions. These four districts have large areas with mid-security level. The total area with
security level higher than the middle level is larger than that with security level lower than the middle
level in these four districts. Hannan and Hongshan Districts are the districts with the best ecological
conditions in Wuhan because of their large proportions of Class 4 and Class 5. Qingshan District has a
big internal difference: the ecological safe areas and unsafe areas account for 42% and 44%, and both
are widely distributed. On the contrary, the Dongxihu District has the smallest internal heterogeneity.
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Figure 8. Prediction results of the ecological security in 2020.

Figure 9 illustrates the proportions of each ecological security level in the 13 districts of Wuhan
from 2005 to 2020. From the figure, it can be seen that the ecological security situation will have an
improvement in the areas of Hannan, Hongshan, Jiangxia, Qingshan, and Jiangan Districts by 2020.
Jianghan and Qiaokou Districts should be the areas for future development. These two districts have a
lot of areas with low security levels.
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Figure 9. The proportions of each ecological security level in the 13 districts of Wuhan from 2005 to 2020.

4. Conclusions

In this paper, we proposed an improved CA approach for simulate and predict urban ecological
security at a fine scale (district level). We proposed to first evaluate urban ecological security using
the PSR method, and then simulate and predict urban ecological security using the CA model with
the GWR concept. We applied the proposed CA approach in a case study—simulating and predicting
urban ecological security in Wuhan, China. We first evaluated the ecological security levels in 2005
and 2010 in Wuhan city using the PSR method. We then simulated and predicted the future urban
ecological security situations in 2010 and 2020 using the improved CA model with the GWR concept.
The results show that our improved CA model is effective and feasible for simulation or prediction of
future ecological security.

Although the simulated results are good, there were some limitations in our case study.
For example, the Landsat images were used in this case study. The Landsat imagery has a low
resolution and many mixed pixels. The mixed pixels made it difficult to accurately classify the satellite
images. As the input data for our models, the inaccurate classification results from the satellite images
affected the accuracy of our final simulation results. For example, Class 4 generated the largest error
in the simulation results of 2010—there is about 9% difference between the simulation results and
the evaluated results of Class 4. This has caused the overall simulated ecological security situation
lower than the overall actual situation. The other limitation is validation of the CA model. It is
impossible to obtain a perfect simulation result using any model. Therefore, it is important to validate
the improved CA model for practical applications. In this study, we only used the kappa coefficient
indices for validation purpose. However, the Kappa indices have limitations, and sometimes they
may be misleading for purposes of accuracy assessment and map comparison [70]. Therefore, we may
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consider adopting more measures, such as quantity disagreement and allocation disagreement from a
cross-tabulation matrix, for validation purposes in the future.

We discussed the reasons for the ecological security changes in Wuhan from 2005 to 2010.
The ecological security environment changes between 2005 and 2010 resulted from multiple factors.
The ecological security changes were mainly caused by the rapid economic development and
construction efforts in Wuhan. Better ecological planning management practices and policies in 2010
also led to the ecological security improvement. These planning management and policies were mainly
applied to the outer ring areas around the main urban areas.

Based on the prediction results of 2020, we would like to make the following policy
recommendations for each district in Wuhan. For the districts that are continuing to have a comparably
high ecological security and have an obvious improvement from 2005 to 2020, such as Hannan,
Hongshan, and Jiangxia Districts, the government only needs to maintain the ecological environment.
For the districts that will continue to be the concentration areas with the worst ecological security
situations of Wuhan city in 2020, such as the Jianghan, Jiangan, and Qiaokou Districts, the government
should pay more attention to a centralized development for them. The government should undertake
more contiguous land use planning instead of fragmented land use planning in order to make full
use of each piece of land. For some districts such as Qingshan District, diverse plans should be made
inside the district considering its high internal spatial heterogeneity in 2020.
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