Evolution Assessment of Mining Subsidence Characteristics Using SBAS and PS Interferometry in Sanshandao Gold Mine, China
Abstract
:1. Introduction
2. Region of Interest
2.1. Geological Settings
2.2. Mining Settings
3. Materials and Methods
3.1. SAR Images
3.2. Data Processing of Time-Series InSAR Technology
4. Results
4.1. Spatial Characteristics of LOS Velocity Fields
4.2. Deformation Time-Series Evolution
4.2.1. Comparison between PSI and SBAS Results
4.2.2. Spatiotemporal Correlation between InSAR Results and Mining Activities
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, Y.Q.; Zhang, Y.; Ye, S.J.; Wen, J.C.; Lin, Q.F. Land subsidence in China. Environ. Geol. 2005, 48, 713–720. [Google Scholar] [CrossRef]
- Estelle, C.; Shimon, W.; Enrique, C.; Falk, A. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar]
- Cianflone, G.; Tolomei, C.; Brunori, C.A.; Dominici, R. InSAR time series analysis of natural and anthropogenic coastal plain subsidence: The case of sibari (Southern Italy). Remote Sens. 2015, 7, 16004–16023. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.E.; Blom, R.G. Bayou Corne, Louisiana, sinkhole: Precursory deformation measured by radar interferometry. Geology 2014, 42, 111–114. [Google Scholar] [CrossRef]
- Sócrates, F.M.; Víctor, M.H.M.; José, T.V.; Cecilia, I.V.R. Evolution assessment of structurally-controlled differential subsidence using SBAS and PS interferometry in an emblematic case in Central Mexico. Eng. Geol. 2020, 279, 105860. [Google Scholar]
- Chai, J.C.; Shen, S.L.; Zhu, H.H.; Zhang, X.L. 1D analysis of land subsidence in Shanghai. Lowl. Technol. Int. 2005, 7, 33–41. [Google Scholar]
- Shen, S.L.; Ma, L.; Xu, Y.S.; Yin, Z.Y. Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Can. Geotech. J. 2013, 50, 1129–1142. [Google Scholar] [CrossRef]
- Shen, S.L.; Xu, Y.S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Stamatopoulos, C.; Petridis, P.; Parcharidis, I.; Foumelis, M. A method predicting pumping-induced ground settlement using back-analysis and its application in the Karla region of Greece. Nat. Hazards 2018, 92, 1733–1762. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Tosi, L.; Bitelli, G.; Spreckels, V. Land subsidence monitoring with differential SAR interferometry. Photogramm. Eng. Remote Sens. 2001, 67, 1261–1270. [Google Scholar]
- Pirouzi, A.; Eslami, A. Ground subsidence in plains around Tehran: Site survey, records compilation and analysis. Int. J. Geo-Eng. 2017, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Gong, H.; Chen, B.; Liu, K.; Gao, M. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Sci. Total Environ. 2020, 738, 139405. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Francisco, G.; Jesús, G. The impact of groundwater drawdown and vacuum pressure on sinkhole development. Phys. Lab. Models Eng. Geol. 2020, 279, 105894. [Google Scholar] [CrossRef]
- Kratzsch, H. Mining Subsidence Engineering; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1983. [Google Scholar]
- Bell, F.G.; Stacey, T.R.; Genske, D.D. Mining subsidence and its effect in the environment: Some differing examples. Environ. Geol. 2000, 40, 135–152. [Google Scholar] [CrossRef]
- Donnelly, L.J.; De La Cruz, H.; Asmar, I.; Zapata, O.; Perez, J.D. The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia, Colombia. Eng. Geol. 2001, 59, 103–114. [Google Scholar] [CrossRef]
- Miao, F.; Yan, M.; Qi, X.; Ye, C.; Wang, B.; Liu, R.; Chen, J. Application of DInSAR and GIS for underground mine subsidence monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 251–255. [Google Scholar]
- Oh, H.J.; Lee, S. Assessment of ground subsidence using GIS and the weights-of-evidence model. Eng. Geol. 2010, 115, 36–48. [Google Scholar] [CrossRef]
- Can, E.; Mekik, C.; Kuşcu, S.; Akçın, H. Subsidence occurring in mining regions and a case study of Zonguldak-Kozlu Basin. Sci. Res. Essays 2011, 6, 1317–1327. [Google Scholar]
- Gambolati, G.; Teatini, P.; Ferronato, M. Anthropogenic land subsidence. Encycl. Hydrol. Sci. 2006. [Google Scholar] [CrossRef]
- Gambolati, G.; Putti, P.; Teatini, G.; Gasparetto, S. Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon. Environ. Geol. 2006, 49, 814–820. [Google Scholar]
- Lautsch, H. The extended trough theory for the interpretation of soil movements caused by mining. Glückauf 1974, 35, 167–173. [Google Scholar]
- Stojanović, A.; Patarić, M. Uber die stochastische Theorie der Gebirgsbewegung als Abbaufolge. Int. Symp. Mine Surv. (ISM) 1979, 4, 169–180. [Google Scholar]
- Carnec, C.; Delacourt, C. Three years of mining subsidence monitored by SAR interferometry, near Gradane. J. Appl. Geophys. 2000, 43, 43–54. [Google Scholar] [CrossRef]
- Stramondo, S.; Bozzano, F.; Marra, F.; Wegmuller, U.; Cinti, F.; Moro, M.; Saroli, M. Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sens. Environ. 2008, 112, 3160–3172. [Google Scholar] [CrossRef]
- Yerro, A.; Corominas, J.; Monells, D.; Mallorquí, J.J. Analysis of the evolution of ground movements in a low densely urban area by means of DInSAR technique. Eng. Geol. 2014, 170, 52–65. [Google Scholar] [CrossRef]
- Squarzoni, C.; Delacourt, C.; Allemand, P. Nine years of spatial and temporal evolution of the La Vallette landslide observed by SAR interferometry. Eng. Geol. 2003, 68, 53–66. [Google Scholar] [CrossRef]
- Farina, P.; Colombo, D.; Fumagalli, A.; Marks, F.; Moretti, S. Permanent scatterers for landslide investigations: Outcomes from the ESA-SLAM project. Eng. Geol. 2006, 88, 200–217. [Google Scholar]
- Zhao, C.Y.; Lu, Z.; Zhang, Q.; Fuente, J. Large-area landslide detection and monitoring with Alos/Palsar imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Komac, M.; Bavec, M. Application of PS InSAR for observing the vertical component of the recent surface displacement in Julian Alps. Geologija 2007, 50, 97–110. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Salvi, S.; Atzori, S.; Tolomei, C.; Allievi, J.; Ferretti, A.; Rocca, F.; Prati, C.; Stramondo, S.; Feuillet, N. Inflation rate of the Colli Albani volcanic complex retrieved by the permanent scatterers SAR interferometry technique. Geophys. Res. Lett. 2004, 31, 12606–12610. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Pa, S.; Howard, Z.A. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, B7. [Google Scholar] [CrossRef] [Green Version]
- Peltier, A.; Bianchi, M.; Kaminski, E.; Komorowski, J.C.; Rucci, A.; Staudacher, T. PsInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.C.; Ringrose, P.S.; Mathieson, I.W. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef]
- Cigna, F.; Bateson, B.L.; Jordan, J.C.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef] [Green Version]
- Bürgmann, R.; Rosen, P.A.; Fielding, J.E. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Perissin, D.; Ying, W.Z.; Hui, L. Shanghai subway tunnels and highways monitoring through cosmo-skymed persistent scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Samsonov, S.; D’oreye, N.; Gonzalez, P. Rapidly accelerating subsidence in the greater Vancouver region from two decades of ERS-ENVISAT-Radarsat-2 DInSAR measurements. Remote Sens. Environ. 2014, 143, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Abelson, M.; Raz, E.; Magen, M.; Atzori, S.; Salvi, S.; Baer, G. SAR Interferometry for Sinkhole Early Warning and Susceptibility Assessment along the Dead Sea, Israel. Remote Sens. 2019, 1, 89. [Google Scholar]
- Malinowska, A.A.; Witkowski, T.W.; Hejmanowski, R.; Chang, L.; Leijen, J.V.F.; Hanssen, F.R. Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng. Geol. 2019, 262, 105336. [Google Scholar] [CrossRef]
- Motagh, M.; Shamshiri, R.; Haghighi, M.H.; Wetzel, H.-U.; Akbari, B.; Nahavandchi, H.; Roessner, S.; Arabi, S. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Eng. Geol. 2017, 218, 134–151. [Google Scholar] [CrossRef]
- Svigkas, N.; Papoutsis, I.; Loupasakis, C.; Tsangaratos, P.; Kiratzi, A.; Kontoes, C. Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece. Eng. Geol. 2016, 209, 175–186. [Google Scholar]
- Thapa, S.; Chatterjee, R.S. Estimation of atmospheric effects of radarsat-2 d-insar product using groundbasedand spaceborne meterological data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 243. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.C.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Aly, M.H.; Klein, A.G.; Zebker, H.A. Land subsidence in the Nile Delta of Egypt observed by persistent scatterer interferometry. Int. J. Remote Sens. 2012, 33, 2068–2096. [Google Scholar] [CrossRef]
- Pacheco-Martínez, J.; Hernandez-Marín, M.; Burbey, T.J.; González-Cervantes, N.; Ortíz-Lozano, J.Á.; Zermeño-De-Leon, M.E.; Solís-Pinto, A. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México. Eng. Geol. 2013, 164, 172–186. [Google Scholar] [CrossRef]
- Foroughnia, F.; Nemati, S.; Maghsoudi, Y.; Perissin, D. An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 74, 248–258. [Google Scholar] [CrossRef]
- Murgia, F.; Bignami, C.; Brunori, C.A.; Tolomei, C.; Pizzimenti, L. Ground Deformations Controlled by Hidden Faults: Multi-Frequency and Multitemporal InSAR Techniques for Urban Hazard Monitoring. Remote Sens. 2019, 11, 2246. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A. Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series. Geophys. Res. Lett. 2018, 45, 1878–1887. [Google Scholar] [CrossRef]
- Ramesh, P.S.; Ram, N.Y. Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India. Eng. Geol. 1995, 39, 103–111. [Google Scholar]
- Hahn, J.C.; Sang-Wan, K.; Hyung-Sup, J.; Kyung, M.D.; Joong-Sun, W. Satellite observation of coal mining subsidence by persistent scatterer analysis. Eng. Geol. 2007, 92, 1–13. [Google Scholar]
- Choi, J.K.; Won, J.S.; Lee, S.; Kim, S.W.; Kim, K.D.; Jung, H.S. Integration of a subsidence model and SAR interferometry for a coal mine subsidence hazard map in Taebaek. Int. J. Remote Sens. 2011, 32, 8161–8181. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Huang, G. Precise monitoring and analysis of the land subsidence in Jining coal mining area based on InSAR technique. J. China Univ. Min. Technol. 2014, 43, 169–174. [Google Scholar]
- Mark, G.; Abduwasit, G. Evaluation of land subsidence from underground coal mining using TimeSAR (SBAS and PSI) in Springfield, Illinois, USA. Nat. Hazards 2015, 79, 1739–1751. [Google Scholar]
- Rehman, S.; Sahana, M.; Duttta, S.; Sajjad, H.; Song, X.; Imdad, K.; Dou, J. Assessing subsidence susceptibility to coal mining using frequency ratio, statistical index and Mamdani fuzzy models: Evidence from Raniganj coalfield, India. Environ. Earth Sci. 2020, 79, 16. [Google Scholar] [CrossRef]
- Yan, H.; Gao, K.; Peng, H. Study on Surface Subsidence Law Induced by Deep Mining of Large Steep Metal Deposit. J. Appl. Mech. Mater. 2013, 295–298, 2902–2905. [Google Scholar]
- Alex, H.M.N.; Linlin, G.; Xiaojing, L. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens. Environ. 2015, 159, 86–101. [Google Scholar]
- Fengshan, M.; Hongyu, G.; Jie, G.; Rong, L. Analysis of ground deformation based on GPS in Sanshandao gold mine, China. J. Nepal Geol. Soc. 2018, 55, 7–14. [Google Scholar]
- Papoutsis, I.; Kontoes, C.; Alatza, S.; Apostolakis, A.; Loupasakis, C. InSAR Greece with Parallelized Persistent Scatterer Interferometry: A National Ground Motion Service for Big Copernicus Sentinel-1 Data. Remote Sens. 2020, 12, 3207. [Google Scholar] [CrossRef]
- Duan, X.L.; Ma, F.S.; Guo, J.; Zhao, H.J.; Gu, H.Y.; Liu, S.Q.; Sun, Q.H. Source Identification and Quantification of Seepage Water in a Coastal Mine, in China. Water 2019, 11, 1862. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.F.; Wang, K.; Ma, F.S.; Lu, R. Optimization of three-underground mining technology and disaster prevention in Sanshandao Gold Mine. Gold Sci. Technol. 2020, 28, 734–742. [Google Scholar]
- Jiang, W.L.; Zhang, J.F.; Han, Z.J.; Tian, T.; Jiao, Q.S.; Wang, X.; Jiang, H.B. Characteristic Slip of Strong Earthquakes Along the Yishu Fault Zone in East China Evidenced by Offset Landforms. Tectonics 2017, 36, 1947–1965. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Yang, L.Q.; Wang, S.R.; Liu, X.D.; Wang, H.; Li, D.P.; Wei, P.F.; Cheng, W.; Chen, B.Y. Origin and Evolution of Ore-Forming Fluid and Gold-Deposition Processes at the Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China. Minerals 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Ma, F.S.; Zhao, H.J.; Li, G.; Cao, J.Y.; Guo, J. Study on the Fracture Distribution Law and the Influence of Discrete Fractures on the Stability of Roadway Surrounding Rock in the Sanshandao Coastal Gold Mine, China. Sustainability 2019, 11, 2758. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.Y.; Ma, F.S.; Guo, J.; Li, K.P.; Lu, R. Assessment of Water Sources and Mixing of Groundwater in a Coastal Mine: The Sanshandao Gold Mine, China. Mine Water Environ. 2018, 37, 351–365. [Google Scholar] [CrossRef]
- Geudtner, D.; Prats, P.; Yague, N.; Navas-Traver, I.; Barat, I.; Torres, R. Sentinel-1 SAR interferometry performance verification. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–4. [Google Scholar]
- Hu, L.Y.; Dai, K.R.; Xing, C.Q.; Li, Z.H.; Tomás, R.; Clark, B.; Shi, X.L.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinform. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the Small BAseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Sansosti, E.; Casu, F.; Manzo, M.; Lanari, R. Spaceborne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth’s surface displacement analysis. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Necsoiu, M.; McGinnis, R.N.; Hooper, D.M. New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides 2014, 11, 1141–1153. [Google Scholar] [CrossRef]
- Zebker, H.A. Geodetically accurate InSAR data processor. Geosci. Remote Sens. IEEE Trans. 2010, 48, 4309–4321. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.L.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS J. Photogramm. Remote Sens. 2011, 66, 146–152. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, G.X.; Ding, X.; Li, Y.S. Radar differential interferometry based on permanent scatterers and its application to detecting regional ground subsidence. Acta Geophys. Sin. 2007, 50, 737–743. [Google Scholar]
- ESA. SNAP Download STEP [WWW Document]. Step Sci. Toolbox Explot. Platf URL. 2017. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 8 December 2021).
- Hooper, A.; Bekaert, D.; Spaans, K. StaMPS/MTI Manual; Version 3.3b1; University of Leeds: Leeds, UK, 2013. [Google Scholar]
- Joaquim, S.; Andrew, H.J.; Ramon, H.F.; Maria, B.L.; Antonio, R.M. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. Environ. 2011, 115, 2652–2663. [Google Scholar]
- Dwivedi, R.; Varshney, P.; Tiwari, A.; Singh, A.K.; Dikshit, O. The International Archives of Photogrammetry. Remote Sens. Spat. Inf. Sci. 2014, 8, 35–38. [Google Scholar]
- Czikhardt, R.; Papčo, J.; Bakoň, M. Feasibility of the Sentinel-1 Multi-temporal InSAR system based on the SNAP and StaMPS: Case study from the Tatra Mts., Slovakia. Procedia Comput. Sci. 2018, 138, 366–373. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Zhang, C.S.; Zhang, S. A robust-symmetric mean: A new way of mean calculation for environmental data. GeoJournal 1996, 40, 209–212. [Google Scholar] [CrossRef]
- Lilliefors, W.H. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Am. Stat. Assoc. 2012, 318, 399–402. [Google Scholar] [CrossRef]
- Bell, F.G.; Donnelly, L.J.; Genske, D.D.; Ojeda, J. Unusual cases of mining subsidence from Great Britain, Germany and Colombia. Environ. Geol. 2005, 47, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Sainoki, A.; Mitri, H.S. Dynamic behavior of mining-induced fault slip. Int. J. Rock Mech. Min. Sci. 2014, 66, 19–29. [Google Scholar] [CrossRef]
Items | Description |
---|---|
mission | Sentinel-1A |
scanning mode | IW |
band type | C |
antenna_pointing | right |
slice number | 7 |
orbit direction | ascending |
range_spacing (m) | 2.3296 |
azimuth_spacing (m) | 13.9637 |
track number | 171 |
incidence_angle (°) | 38.9 |
time spans | 2018 02 22–2021 07 12 |
days | 1236 |
Stage | 20180222–20200801 | 20200801–20210525 | ||
---|---|---|---|---|
Items | Velocity | R2 | Velocity | R2 |
R1 | 32.56 | 0.95 | 51.00 | 0.92 |
R2 | 31.13 | 0.95 | 53.00 | 0.95 |
S1 | 31.35 | 0.93 | 50.55 | 0.91 |
S2 | 31.76 | 0.94 | 72.34 | 0.92 |
SC1 | 21.28 | 0.92 | 30.62 | 0.87 |
SC2 | 13.72 | 0.85 | 16.06 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ma, F.; Li, G.; Guo, J.; Wan, Y.; Song, Y. Evolution Assessment of Mining Subsidence Characteristics Using SBAS and PS Interferometry in Sanshandao Gold Mine, China. Remote Sens. 2022, 14, 290. https://doi.org/10.3390/rs14020290
Liu J, Ma F, Li G, Guo J, Wan Y, Song Y. Evolution Assessment of Mining Subsidence Characteristics Using SBAS and PS Interferometry in Sanshandao Gold Mine, China. Remote Sensing. 2022; 14(2):290. https://doi.org/10.3390/rs14020290
Chicago/Turabian StyleLiu, Jia, Fengshan Ma, Guang Li, Jie Guo, Yang Wan, and Yewei Song. 2022. "Evolution Assessment of Mining Subsidence Characteristics Using SBAS and PS Interferometry in Sanshandao Gold Mine, China" Remote Sensing 14, no. 2: 290. https://doi.org/10.3390/rs14020290
APA StyleLiu, J., Ma, F., Li, G., Guo, J., Wan, Y., & Song, Y. (2022). Evolution Assessment of Mining Subsidence Characteristics Using SBAS and PS Interferometry in Sanshandao Gold Mine, China. Remote Sensing, 14(2), 290. https://doi.org/10.3390/rs14020290