Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding
Abstract
:1. Introduction
2. Forward Model and Simulation Spectrum
3. Element Density Retrieval
4. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCMC | Markov Chain Monte Carlo |
NICER | The Neutron star Interior Composition Explorer |
XTI | X-ray Timing Instrument |
RSP | detector response matrix |
References
- Mori, K.; Tsunemi, H.; Katayama, H.; Burrows, D.N.; Garmire, G.P.; Metzger, A.E. An X-ray Measurement of Titan’s Atmospheric Extent from Its Transit of the Crab Nebula. Astrophys. J. 2004, 607, 1065–1069. [Google Scholar] [CrossRef]
- Rahmati, A.; Larson, D.E.; Cravens, T.E.; Lillis, R.J.; Lee, C.O.; Dunn, P.A. MAVEN SEP Observations of Scorpius X-1 X-rays at Mars: A Midatmosphere Occultation Analysis Technique. Geophys. Res. Lett. 2020, 47, e88927. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Determan, J.R.; Budzien, S.A.; Kowalski, M.P.; Lovellette, M.N.; Ray, P.S.; Wolff, M.T.; Wood, K.S.; Titarchuk, L.; Bandyopadhyay, R. Measuring atmospheric density with X-ray occultation sounding. J. Geophys. Res. 2007, 112, A06323. [Google Scholar] [CrossRef] [Green Version]
- Roble, R.G.; Dickinson, R.E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett. 1989, 16, 1441–1444. [Google Scholar] [CrossRef] [Green Version]
- Katsuda, S.; Fujiwara, H.; Ishisaki, Y.; Yoshitomo, M.; Mori, K.; Motizuki, Y.; Sato, K.; Tashiro, M.S.; Terada, Y. New Measurement of the Vertical Atmospheric Density Profile from Occultations of the Crab Nebula With X-ray Astronomy Satellites Suzaku and Hitomi. J. Geophys. Res. 2021, 126, e28886. [Google Scholar] [CrossRef]
- Yu, D.; Li, H.; Li, B.; Ge, M.; Tuo, Y.; Li, X.; Xue, W.; Liu, Y.; Wang, A.; Zhu, Y.; et al. Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT. Atmos. Meas. Tech. 2022, 15, 3141–3159. [Google Scholar] [CrossRef]
- Yu, D.; Li, H.; Li, B.; Ge, M.; Tuo, Y.; Li, X.; Xue, W.; Liu, Y. New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT. Adv. Space Res. 2022, 69, 3426–3434. [Google Scholar] [CrossRef]
- Gendreau, K.C.; Arzoumanian, Z.; Adkins, P.W.; Albert, C.L.; Anders, J.F.; Aylward, A.T.; Baker, C.L.; Balsamo, E.R.; Bamford, W.A.; Benegalrao, S.S.; et al. The Neutron star Interior Composition Explorer (NICER): Design and development. In Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; den Herder, J.W.A., Takahashi, T., Bautz, M., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9905, p. 99051H. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick, J.E.; Harries, J.E.; Crutzen, P.J. The Halogen Occultation Experiment. J. Geophys. Res. 1993, 98, 10777–10797. [Google Scholar] [CrossRef]
- Lumpe, J.D.; Floyd, L.E.; Herring, L.C.; Gibson, S.T.; Lewis, B.R. Measurements of thermospheric molecular oxygen from the Solar Ultraviolet Spectral Irradiance Monitor. J. Geophys. Res. 2007, 112, D16308. [Google Scholar] [CrossRef] [Green Version]
- Noël, S.; Bramstedt, K.; Rozanov, A.; Bovensmann, H.; Burrows, J.P. Water vapour profiles from SCIAMACHY solar occultation measurements derived with an onion peeling approach. Atmos. Meas. Tech. 2010, 3, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.; Tan, Y.; Yang, Y.; Ge, M.; Zhang, J.; Tuo, Y.; Wu, B.; Liao, J.; Zhang, Y.; et al. In-flight calibration of the Insight-Hard X-ray Modulation Telescope. J. High Energy Astrophys. 2020, 27, 64–76. [Google Scholar] [CrossRef]
- Kirsch, M.G.; Briel, U.G.; Burrows, D.; Campana, S.; Cusumano, G.; Ebisawa, K.; Freyberg, M.J.; Guainazzi, M.; Haberl, F.; Jahoda, K.; et al. Crab: The standard X-ray candle with all (modern) X-ray satellites. In UV, X-ray, and Gamma-ray Space Instrumentation for Astronomy XIV; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Siegmund, O.H.W., Ed.; SPIE: Bellingham, WA, USA, 2005; Volume 5898, pp. 22–33. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Horns, D.; Zechlin, H.S. The Crab Nebula as a standard candle in very high-energy astrophysics. Astron. Astrophys. 2010, 523, A2. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.L.; Ge, M.Y.; Lu, F.J.; Zheng, S.J.; Tuo, Y.L.; Li, Z.J.; Song, L.M.; Qu, J.L. Time Evolution of the X-ray and ɤ-ray Fluxes of the Crab Pulsar. Astrophys. J. 2018, 865, 21. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, K.; Dorman, B.; Gordon, C. XSPEC: An X-ray Spectral Fitting Package; Astrophysics Source Code Library: Houghton, MI, USA, 1999. [Google Scholar]
- Massaro, E.; Campana, R.; Cusumano, G.; Mineo, T. The optical to ɤ-ray emission of the Crab pulsar: A multicomponent model. Astron. Astrophys. 2006, 459, 859–870. [Google Scholar] [CrossRef] [Green Version]
- Chantler, C. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-ray (Z = 30–36, Z = 60–89, E = 0.1 keV–10 keV), Addressing Convergence Issues of Earlier Work. J. Synchrotron Radiat. 2001, 8, 1124. [Google Scholar] [CrossRef]
- Elam, W.; Ravel, B.; Sieber, J. A new atomic database for X-ray spectroscopic calculations. Radiat. Phys. Chem. 2002, 63, 121–128. [Google Scholar] [CrossRef]
- Bayes, M.; Price, M. An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to John Canton, AMFRS. Philos. Trans. R. Soc. Lond. Ser. I 1763, 53, 370–418. [Google Scholar]
- Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 1979, 228, 939–947. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings Algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Dunkley, J.; Bucher, M.; Ferreira, P.G.; Moodley, K.; Skordis, C. Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation. Mon. Not. R. Astron. Soc. 2005, 356, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy. Annu. Rev. Astron. Astrophys. 2017, 55, 213–259. [Google Scholar] [CrossRef] [Green Version]
- Lamminpää, O.; Hobbs, J.; Brynjarsdóttir, J.; Laine, M.; Braverman, A.; Lindqvist, H.; Tamminen, J. Accelerated MCMC for Satellite-Based Measurements of Atmospheric CO2. Remote Sens. 2019, 11, 2061. [Google Scholar] [CrossRef] [Green Version]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Ortner, J.; Maseland, H. Introduction to Solar Terrestrial Relations: Proceedings of the Summer School in Space Physics Held in Alpbach, Austria, July 15–August 10, 1963 and Organized by the European Preparatory Commission for Space Research (COPERS); Springer Science & Business Media: Berlin, Germany, 2012; Volume 2. [Google Scholar]
Latitude and Longitude | Altitude (Resolution) | Date and Time (UT) | (sfu) | Average (sfu) | Ap (nT) |
---|---|---|---|---|---|
(, ) | 10–400 km (0.5 km) | 1 September 2020 10:00 | 70 | 70 | 16 |
Altitude (km) | B | |||||
---|---|---|---|---|---|---|
120 | [0.38, 2.46] | [0.45, 1.28] | [0.15, 0.21] | |||
125 | [0.61, 2.61] | [0.39, 1.22] | [0.14, 0.20] | |||
130 | [0.58, 2.16] | [0.54, 1.23] | [0.15, 0.21] | |||
135 | [0.54, 1.62] | [0.74, 1.25] | [0.14, 0.20] | |||
140 | [0.24, 1.04] | [0.99, 1.39] | [0.16, 0.22] | |||
145 | [1.14, 1.46] | [0.76, 0.92] | [0.14, 0.20] | |||
150 | [1.08, 1.37] | [0.78, 0.93] | [0.11, 0.17] | |||
155 | [0.51, 0.85] | [1.04, 1.24] | [0.16, 0.22] | |||
160 | [0.52, 0.85] | [1.08, 1.28] | [0.11, 0.17] | |||
165 | [0.64, 0.97] | [1.02, 1.23] | [0.15, 0.21] | |||
170 | [0.99, 1.30] | [0.77, 0.97] | [0.14, 0.20] | |||
175 | [1.30, 1.65] | [0.74, 0.97] | [0.13, 0.19] | |||
180 | [0.67, 1.05] | [0.85, 1.13] | [0.17, 0.25] | |||
185 | [0.86, 1.32] | [1.05, 1.42] | [0.18, 0.24] | |||
190 | [0.84, 1.32] | [0.75, 1.14] | [0.15, 0.21] | |||
195 | [0.91, 1.45] | [0.89, 1.38] | [0.19, 0.25] | |||
200 | [1.47, 2.05] | [0.30, 0.84] | [0.10, 0.16] | |||
205 | [0.54, 1.18] | [0.94, 1.62] | [0.11, 0.17] | |||
210 | [0.42, 1.10] | [0.57, 1.39] | [0.15, 0.21] | |||
215 | [1.02, 1.76] | [0.36, 1.27] | [0.13, 0.19] | |||
220 | [0.58, 1.35] | [0.28, 1.22] | [0.13, 0.19] | |||
225 | [0.34, 1.18] | [0.21, 1.14] | [0.07, 0.13] | |||
230 | [0.52, 1.37] | [0.20, 1.30] | [0.13, 0.19] | |||
235 | [0.76, 1.62] | [0.12, 1.02] | [0.15, 0.21] | |||
240 | [0.19, 1.02] | [0.29, 1.73] | [0.15, 0.21] | |||
245 | [0.17, 1.20] | [0.97, 3.18] | [0.15, 0.21] | |||
250 | [0.12, 0.92] | [0.58, 2.66] | [0.09, 0.15] |
Altitude (km) | O Element Ratio | N Element Ratio |
---|---|---|
120 | 21.70% | 78.30% |
125 | 22.62% | 77.38% |
130 | 23.77% | 76.23% |
135 | 25.12% | 74.88% |
140 | 26.64% | 73.36% |
145 | 28.28% | 71.72% |
150 | 30.02% | 69.98% |
155 | 31.84% | 68.16% |
160 | 33.71% | 66.29% |
165 | 35.63% | 64.37% |
170 | 37.59% | 62.41% |
175 | 39.57% | 60.43% |
180 | 41.57% | 58.43% |
185 | 43.58% | 56.42% |
190 | 45.60% | 54.40% |
195 | 47.62% | 52.38% |
200 | 49.63% | 50.37% |
205 | 51.62% | 48.38% |
210 | 53.60% | 46.40% |
215 | 55.55% | 44.45% |
220 | 57.48% | 42.52% |
225 | 59.36% | 40.64% |
230 | 61.21% | 38.79% |
235 | 63.01% | 36.99% |
240 | 64.76% | 35.24% |
245 | 66.47% | 33.53% |
250 | 68.12% | 31.88% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Li, B. Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding. Remote Sens. 2022, 14, 4971. https://doi.org/10.3390/rs14194971
Yu D, Li B. Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding. Remote Sensing. 2022; 14(19):4971. https://doi.org/10.3390/rs14194971
Chicago/Turabian StyleYu, Daochun, and Baoquan Li. 2022. "Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding" Remote Sensing 14, no. 19: 4971. https://doi.org/10.3390/rs14194971
APA StyleYu, D., & Li, B. (2022). Simulation Calculation of Element Number Density in the Earth’s Atmosphere Based on X-ray Occultation Sounding. Remote Sensing, 14(19), 4971. https://doi.org/10.3390/rs14194971