Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from 1981 to 2016 in North China by Improving Phenology Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Remotely Sensed Data
2.2.2. Wheat Classification Maps
2.2.3. Ground Observation Data
2.3. Methods
2.3.1. The Calibrated Relative Threshold Method
2.3.2. Calculation of Temporal Trends
2.3.3. Relationship between Phenology and Temperature
3. Results
3.1. Performance of CRTM in Extracting Wheat Phenology
3.2. Spatial Patterns and Temporal Trends of Phenological Dates
3.3. Spatial Patterns and Temporal Trends of Wheat Growth Periods
3.4. Relationships between Phenological Metrics and Temperature
3.4.1. Relationships between Phenological Dates and Preseason Temperatures
3.4.2. Relationships between the Growth Period Length and Intraseasonal Temperatures
4. Discussion
4.1. Advantages of CRTM and Its Limitations
4.2. Comparisons with Existing Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, L.; Wang, C.; Guo, H.; Li, Q. Detecting Winter Wheat Phenology with SPOT-VEGETATION Data in the North China Plain. Geocarto. Int. 2014, 29, 244–255. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Liu, Z.; Baig, M.H.A.; Chi, W. Understanding Long-Term (1982–2013) Patterns and Trends in Winter Wheat Spring Green-up Date over the North China Plain. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 235–244. [Google Scholar] [CrossRef]
- Guo, W.L.; Shi, H.B.; Ma, J.J.; Zhang, Y.J.; Wang, J.; Shu, W.J.; Zhang, Z.Y. Basic Features of Climate Change in North China during 1961–2010. Adv. Clim. Chang. Res. 2013, 4, 73–83. [Google Scholar] [CrossRef]
- Siebert, S.; Ewert, F. Spatio-Temporal Patterns of Phenological Development in Germany in Relation to Temperature and Day Length. Agric. For. Meteorol. 2012, 152, 44–57. [Google Scholar] [CrossRef]
- Larson, C. Losing Arable Land, China Faces Stark Choice: Adapt or Go Hungry. Science 2013, 339, 644–645. [Google Scholar] [CrossRef] [PubMed]
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part B: Regional Aspects: Working Group Ⅱ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Qin, Y.; Dai, L.; Zou, X.; Chen, J. Modelling the Impacts of Climate Change and Crop Management on Phenological Trends of Spring and Winter Wheat in China. Agric. For. Meteorol. 2018, 248, 518–526. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J.; Dou, Y. Effects of Climate Change and Agronomic Practice on Changes in Wheat Phenology. Clim. Chang. 2018, 150, 273–287. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and Climate Change: Progress, Trends, and Challenges in Simulating Impacts and Informing Adaptation. Proc. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef]
- Fang, S.; Ren, S.; Tan, K. Responses of Winter Wheat to Higher Night Temperature in Spring as Compared within Whole Growth Period by Controlled Experiments in North China. J. Food Agric. Environ. 2013, 11, 777–781. [Google Scholar]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W.; Wang, M.; Liu, F.; Zhang, S.; Zhu, Z. Observed Changes in Winter Wheat Phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef]
- Li, K.; Yang, X.; Tian, H.; Pan, S.; Liu, Z.; Lu, S. Effects of Changing Climate and Cultivar on the Phenology and Yield of Winter Wheat in the North China Plain. Int. J. Biometeorol. 2016, 60, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-b.; Chen, J.; Tong, W.-j.; Xu, C.-c.; Chen, F. Impacts of Climate Change and Varietal Replacement on Winter Wheat Phenology in the North China Plain. Int. J. Plant Prod. 2018, 12, 251–263. [Google Scholar] [CrossRef]
- Guo, L.; An, N.; Wang, K. Reconciling the Discrepancy in Ground- and Satellite-Observed Trends in the Spring Phenology of Winter Wheat in China from 1993 to 2008. J. Geophys. Res. 2016, 121, 1027–1042. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, J.; Yu, Q.; Huang, J. Using MODIS LAI Data to Monitor Spatio-Temporal Changes of Winter Wheat Phenology in Response to Climate Warming. Remote Sens. 2020, 12, 786. [Google Scholar] [CrossRef] [Green Version]
- McMaster, G.S.; Smika, D.E. Estimation and Evaluation of Winter Wheat Phenology in the Central Great Plains. Agric. For. Meteorol. 1988, 43, 1–18. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-Year Monitoring of Rice Crop Phenology through Time Series Analysis of MODIS Images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Gan, L.; Cao, X.; Chen, X.; Dong, Q.; Cui, X.; Chen, J. Comparison of MODIS-Based Vegetation Indices and Methods for Winter Wheat Green-up Date Detection in Huanghuai Region of China. Agric. For. Meteorol. 2020, 288–289, 108019. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.; Feng, L.; Yin, H.; Yu, W. Phenological Trends of Winter Wheat in Response to Varietal and Temperature Changes in the North China Plain. Field Crops Res. 2013, 144, 135–144. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S. Detecting Changes of Wheat Vegetative Growth and Their Response to Climate Change over the North China Plain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4630–4636. [Google Scholar] [CrossRef]
- Sharma, S.; Ochsner, T.E.; Twidwell, D.; Carlson, J.D.; Krueger, E.S.; Engle, D.M.; Fuhlendorf, S.D. Nondestructive Estimation of Standing Crop and Fuel Moisture Content in Tallgrass Prairie. Rangel. Ecol. Manag. 2018, 71, 356–362. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X.; et al. Plant Phenology Changes and Drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring Vegetation Phenology Using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing Altitudinal Gradient of Spring Vegetation Phenology during the Last Decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2014, 189–190, 71–80. [Google Scholar] [CrossRef]
- Sakamoto, T. Refined Shape Model Fitting Methods for Detecting Various Types of Phenological Information on Major U.S. Crops. ISPRS J. Photogramm. Remote Sens. 2018, 138, 176–192. [Google Scholar] [CrossRef]
- Chen, J.; Rao, Y.; Shen, M.; Wang, C.; Zhou, Y.; Ma, L.; Tang, Y.; Yang, X. A Simple Method for Detecting Phenological Change from Time Series of Vegetation Index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3436–3449. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method. Remote Sens. 2019, 11, 2725. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A Continental Phenology Model for Monitoring Vegetation Responses to Interannual Climatic Variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, W.; Tao, B.; Ji, L.; Liang, L.; Ruane, A.C.; Fisher, J.B.; Liu, J.; Sama, M.; Li, Z.; et al. Characterizing Spatiotemporal Patterns of Crop Phenology across North America during 2000–2016 Using Satellite Imagery and Agricultural Survey Data. ISPRS J. Photogramm. Remote Sens. 2020, 170, 156–173. [Google Scholar] [CrossRef]
- Jin, S. Wheat in China; China Agricultural Press: Beijing, China, 1996. [Google Scholar]
- Sun, H.; Xu, A.; Lin, H.; Zhang, L.; Mei, Y. Winter Wheat Mapping Using Temporal Signatures of MODIS Vegetation Index Data. Int. J. Remote Sens. 2012, 33, 5026–5042. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A Simple Method to Improve the Quality of NDVI Time-Series Data by Integrating Spatiotemporal Information with the Savitzky-Golay Filter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Rao, Y.; Liu, L.; Wang, W.; Dong, Q. Response of Winter Wheat to Spring Frost from a Remote Sensing Perspective: Damage Estimation and Influential Factors. ISPRS J. Photogramm. Remote Sens. 2020, 168, 221–235. [Google Scholar] [CrossRef]
- Liu, L.; Cao, R.; Chen, J.; Shen, M.; Wang, S.; Zhou, J.; He, B. Detecting Crop Phenology from Vegetation Index Time-Series Data by Improved Shape Model Fitting in Each Phenological Stage. Remote Sens. Environ. 2022, 277, 113060. [Google Scholar] [CrossRef]
- Qiu, B.; Luo, Y.; Tang, Z.; Chen, C.; Lu, D.; Huang, H.; Chen, Y.; Chen, N.; Xu, W. Winter Wheat Mapping Combining Variations before and after Estimated Heading Dates. ISPRS J. Photogramm. Remote Sens. 2017, 123, 35–46. [Google Scholar] [CrossRef]
- Williams, G.D.V. Wheat Phenology in Relation to Latitude, Longitude and Elevation on the Canadian Great Plains. Can. J. Plant Sci. 1971, 51, 1–12. [Google Scholar] [CrossRef]
- Ranjitkar, S. Effect of Elevation and Latitude on Spring Phenology of Rhododendron at Kanchenjunga Conservation Area, East Nepal. Int. J. Appl. Sci. Biotechnol. 2013, 1, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Rao, Y.; Chen, J.; Liu, L.; Wang, W. Adopting “Difference-in-Differences” Method to Monitor Crop Response to Agrometeorological Hazards with Satellite Data: A Case Study of Dry-Hot Wind. Remote Sens. 2021, 13, 482. [Google Scholar] [CrossRef]
- Hou, X.; Gao, S.; Niu, Z.; Xu, Z. Extracting Grassland Vegetation Phenology in North China Based on Cumulative SPOT-VEGETATION NDVI Data. Int. J. Remote Sens. 2014, 35, 3316–3330. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.; Liu, Y.; Wang, X.; Fang, B.; Yuan, W.; Ge, Q. Spring Green-up Date Derived from GIMMS3g and SPOT-VGT NDVI of Winter Wheat Cropland in the North China Plain. ISPRS J. Photogramm. Remote Sens. 2017, 130, 81–91. [Google Scholar] [CrossRef]
- Wu, C.; Hou, X.; Peng, D.; Gonsamo, A.; Xu, S. Land Surface Phenology of China’s Temperate Ecosystems over 1999–2013: Spatial–Temporal Patterns, Interaction Effects, Covariation with Climate and Implications for Productivity. Agric. For. Meteorol. 2016, 216, 177–187. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, S.; Zhang, Z. Spatiotemporal Changes of Wheat Phenology in China under the Effects of Temperature, Day Length and Cultivar Thermal Characteristics. Eur. J. Agron. 2012, 43, 201–212. [Google Scholar] [CrossRef]
- Xiao, D.; Moiwo, J.P.; Tao, F.; Yang, Y.; Shen, Y.; Xu, Q.; Liu, J.; Zhang, H.; Liu, F. Spatiotemporal Variability of Winter Wheat Phenology in Response to Weather and Climate Variability in China. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 1191–1202. [Google Scholar] [CrossRef]
- Wu, X.; Yang, W.; Wang, C.; Shen, Y.; Kondoh, A. Interactions among the Phenological Events of Winter Wheat in the North China Plain-Based on Field Data and Improved MODIS Estimation. Remote Sens. 2019, 11, 2976. [Google Scholar] [CrossRef]
Phenological Date | Coefficients | R-Squared | p-Value | |||
---|---|---|---|---|---|---|
Intercept | Altitude | Latitude | Longitude | |||
Emergence | 404.092 | −0.012 | −4.233 | 0.364 | 0.734 | p < 0.001 |
Tillering | 473.800 | −0.011 | −6.079 | 0.535 | 0.700 | p < 0.001 |
Green-up onset | −114.400 | 0.012 | 2.215 | 0.767 | 0.546 | p < 0.001 |
Jointing | −156.800 | 0.019 | 4.833 | 0.640 | 0.862 | p < 0.001 |
Heading | −137.200 | 0.020 | 3.301 | 1.148 | 0.911 | p < 0.001 |
Milky stage | −69.454 | 0.018 | 2.338 | 1.094 | 0.794 | p < 0.001 |
Maturity | −57.935 | 0.019 | 2.450 | 1.083 | 0.855 | p < 0.001 |
PD | Advanced (%) | Total (%) | Delayed (%) | Total (%) | Average Trend (Day/Year) | ||
---|---|---|---|---|---|---|---|
S | NS | S | NS | ||||
EMD | 44.94 | 21.79 | 66.73 | 27.31 | 5.96 | 33.27 | −0.09 |
TID | 40.17 | 12.29 | 52.45 | 37.86 | 9.68 | 47.55 | −0.05 |
GUD | 38.83 | 24.16 | 62.99 | 28.59 | 8.42 | 37.01 | −0.10 |
JTD | 40.62 | 30.21 | 70.83 | 23.59 | 5.58 | 29.17 | −0.08 |
HD | 42.52 | 31.12 | 73.64 | 21.58 | 4.78 | 26.36 | −0.07 |
MKD | 48.31 | 19.57 | 67.88 | 26.93 | 5.20 | 32.12 | −0.03 |
MTD | 43.56 | 10.70 | 54.26 | 37.83 | 7.91 | 45.74 | 0.02 |
Growth Periods | Shortened (%) | Total (%) | Extended (%) | Total (%) | Average Trend (Day/Year) | ||
---|---|---|---|---|---|---|---|
S | NS | S | NS | ||||
VGP | 32.50 | 11.06 | 43.56 | 39.11 | 17.33 | 56.44 | 0.03 |
RGP | 18.24 | 2.20 | 20.44 | 43.63 | 35.93 | 79.56 | 0.09 |
VGRP | 27.73 | 7.57 | 35.30 | 40.92 | 23.77 | 64.70 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, J.; Shen, M.; Shi, T.; Liu, L.; Zhang, L.; Dong, Q.; Wang, C. Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from 1981 to 2016 in North China by Improving Phenology Estimation. Remote Sens. 2022, 14, 4930. https://doi.org/10.3390/rs14194930
Wang S, Chen J, Shen M, Shi T, Liu L, Zhang L, Dong Q, Wang C. Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from 1981 to 2016 in North China by Improving Phenology Estimation. Remote Sensing. 2022; 14(19):4930. https://doi.org/10.3390/rs14194930
Chicago/Turabian StyleWang, Shuai, Jin Chen, Miaogen Shen, Tingting Shi, Licong Liu, Luyun Zhang, Qi Dong, and Cong Wang. 2022. "Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from 1981 to 2016 in North China by Improving Phenology Estimation" Remote Sensing 14, no. 19: 4930. https://doi.org/10.3390/rs14194930
APA StyleWang, S., Chen, J., Shen, M., Shi, T., Liu, L., Zhang, L., Dong, Q., & Wang, C. (2022). Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from 1981 to 2016 in North China by Improving Phenology Estimation. Remote Sensing, 14(19), 4930. https://doi.org/10.3390/rs14194930