Review of Ship Collision Avoidance Guidance Algorithms Using Remote Sensing and Game Control
Abstract
:1. Introduction
2. The Game Control Process Model
2.1. The Condition of the Control Process
2.2. State and Control Limitations
2.3. Sets of Allowable Ship Tactics
3. Multi-Criteria Game Control Algorithms
3.1. Algorithm ANCPGC of Non-Cooperative Positional Game Control
3.2. Algorithm ACPGC of Cooperative Positional Game Control
3.3. Algorithm ANGPC of Non-Game Positional Control
3.4. Algorithm ANCRGC of Non-Cooperative Risk Game Control
3.5. Algorithm ACRGC of Cooperative Risk Game Control
3.6. Algorithm ANGRC of Non-Game Risk Control
4. Computer Simulation of Control Algorithms
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1. Calculating optimal maneuver. |
Appendix B
Algorithm A2. COLREGs rules. |
References
- Lisowski, J. The dynamic game models of safe navigation. TRANSNAV Int. J. Mar. Nav. Safety Sea Transp. 2007, 1, 11–18. [Google Scholar]
- Lisowski, J. The optimal and safe ship trajectories for different forms of neural state constraints. Mechatr. Syst. Mech. Mater. 2012, 180, 64–69. [Google Scholar] [CrossRef]
- Lisowski, J. Comparison of dynamic games in application to safe ship control. Pol. Marit. Res. 2014, 21, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, G.; Liu, C.; Zhang, W. COLREGs-constrained adaptive fuzzy event-triggered control for underactuated surface vessels with the actuator failures. IEEE Trans. Fuzzy Syst. 2020, 29, 3822–3832. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Liu, C.; Zhang, W. A robust fuzzy speed regulator for unmanned sailboat robot via the composite ILOS guidance. Nonlinear 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Śmierzchalski, R.; Witkowska, A. Advanced ship control methods. In Automatic Control, Robotics, and Information Processing; Kulczycki, P., Korbicz, J., Kacprzyk, J., Eds.; Springer Series on Studies in Systems; Decision and Control: Berlin/Heidelberg, Germany, 2021; Volume 296, pp. 617–643. [Google Scholar] [CrossRef]
- Szlapczynski, R.; Szlapczynska, J. Review of ship safety domains: Models and applications. Ocean. Eng. 2017, 145, 277–289. [Google Scholar] [CrossRef]
- Tomera, M.; Alfuth, L. Waypoint path controller for ships. TRANSNAV Int. J. Mar. Nav. Safety Sea Transp. 2020, 14, 375–383. [Google Scholar] [CrossRef]
- Lebkowski, A. Design of an autonomous transport system for coastal areas. TRANSNAV Int. J. Mar. Nav. Safety Sea Transp. 2018, 12, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Song, L.; Yao, J. RANS prediction of wave-induced ship motions and steady wave forces and moments in regular waves. J. Mar. Sci. Eng. 2021, 9, 1459. [Google Scholar] [CrossRef]
- Borkowski, P. Numerical modeling of wave disturbances in the process of ship movement control. Algorithms 2018, 11, 130. [Google Scholar] [CrossRef]
- Hinostroza, M.A.; Xu, H.; Soares, C.G. Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment. Ocean Eng. 2019, 183, 132–154. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, H.; Li, P.; Zou, J. Self-organizing cooperative pursuit strategy for multi-USV with dynamic obstacle ships. J. Mar. Sci. Eng. 2022, 10, 562. [Google Scholar] [CrossRef]
- Engwerda, J. Stabilization of an uncertain simple fishery management game. Fish. Res. 2018, 203, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Reddy, P.V. Dynamic network analysis of a target defense differential game with limited observations. arXiv 2021, arXiv:2101.05592. [Google Scholar]
- Mu, C.; Wang, K.; Ni, Z.; Sun, C. Cooperative differential game-based optimal control and its application to power systems. IEEE Trans. Ind. Inform. 2020, 16, 5169–5179. [Google Scholar] [CrossRef]
- Hagen, I.B.; Kufoalor, K.M.; Brekke, E.F.; Johansen, T.A. MPC-based collision avoidance strategy for existing marine vessel guidance systems. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, T.; Zhu, Q. The inverse problem of linear-quadratic differential games: When is a control strategies profile Nash? arXiv 2022, arXiv:2207.05303. [Google Scholar]
- Braquet, M.; Bakolas, E. Vector field-based collision avoidance for moving obstacles with time-varying elliptical shape. arXiv 2022, arXiv:2207.01747. [Google Scholar]
- Chen, Y.; Georgiou, T.T.; Pavon, M. Covariance steering in zero-sum linear-quadratic two-player differential games. arXiv 2019, arXiv:1909.05468. [Google Scholar]
- Gronbaek, L.; Lindroos, M.; Munro, G.; Pintassilgo, P. Cooperative games in fisheries with more than two players. In Game Theory and Fisheries Management; Springer: Cham, Switzerland, 2020; pp. 81–105. ISBN 978-3-030-40112-2. [Google Scholar]
- Gromova, E.V.; Petrosyan, L.A. On an approach to constructing a characteristic function in cooperative differential games. Project: Cooperative differential games with applications to ecological management. Autom. Remote Control. 2017, 78, 1680–1692. [Google Scholar] [CrossRef]
- Basar, T.; Olsder, G.J. Dynamic Non-Cooperative Game Theory; Siam: Philadelphia, PA, USA, 2013; ISBN 978-0-898-714-29-6. [Google Scholar]
- Lisowski, J. Synthesis of a path-planning algorithm for autonomous robots moving in a game environment during collision avoidance. Electronics 2021, 10, 675. [Google Scholar] [CrossRef]
- Lisowski, J. Multi-criteria multi-stage game optimization. J. Autom. Electron. Electr. Eng. 2022, 4, 37–42. [Google Scholar] [CrossRef]
- Lisowski, J. Game control methods comparison when avoiding collisions with multiple objects using radar remote sensing. Remote Sens. 2020, 12, 1573. [Google Scholar] [CrossRef]
- Ehrgott, M.; Gandibleux, X. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys; Kluwer Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Engwerda, J.C. LQ Dynamic Optimization and Differential Games; John Wiley & Sons: New York, NY, USA, 2005; ISBN 978-0-470-01524-7. [Google Scholar]
- Falcone, M.; Ferretti, R. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations; Sian: Philadelphia, PA, USA, 2014. [Google Scholar]
- Guenin, B.; Konemann, J.; Tuncel, L. A Gentle Introduction to Optimization; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hermes, H.; Isaacs, R. Differential games. Math. Comput. 1965, 19, 700. [Google Scholar] [CrossRef]
- Li, Y.; Vorobeychik, Y. Path planning games. Multiagent Syst. arXiv 2019, arXiv:1910.13880. [Google Scholar]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Osborne, M.J. An Introduction to Game Theory; Oxford University Press: New York, NY, USA, 2004; ISBN 978-0-19-512895-6. [Google Scholar]
- Speyer, J.L.; Jacobson, D.H. Primer on Optimal Control Theory; Siam: Toronto, ON, Canada, 2010; ISBN 978-0-898716-94-8. [Google Scholar]
- Spica, R.; Cristofalo, E.; Wang, Z.; Montijano, E.; Schwager, M. A real-time game theoretic planner for autonomous two-player drone racing. IEEE Trans. Robot. 2020, 36, 1389–1403. [Google Scholar] [CrossRef]
- Wells, D. Game and Mathematics; Cambridge University Press: London, UK, 2003; ISBN 978-1-78326-752-1. [Google Scholar]
- Yong, J. Optimization Theory—A Concise Introduction; World Scientific: New Jersey, NJ, USA, 2018; ISBN 978-981-3237-64-3. [Google Scholar]
- Lazarowska, A. Safe Trajectory Planning for Maritime Surface Ships; Springer Series on Naval Architecture, Marine Engineering; Shipbuilding and Shipping: Berlin/Heidelberg, Germany, 2022; Volume 13, pp. 1–185. [Google Scholar] [CrossRef]
- Isaacs, R. Differential Games; John Wiley & Sons: New York, NY, USA, 1965; ISBN 0-48640-682-2. [Google Scholar]
- Kim, I.Y.; de Weck, O.L. Adaptive weighted sum method for bi-objective optimization: Pareto front generation. Struct. Multidiscip. Opt. 2005, 29, 149–158. [Google Scholar] [CrossRef]
- Koksalan, M.; Wallenius, J.; Zionts, S. Early history of multiple criteria decision making. J. Multi-Criteria Decis. Anal. 2013, 20, 87–94. [Google Scholar] [CrossRef]
- Legriel, J. Multicriteria Optimization and Its Application to Multi-Processor Embedded Systems. Ph.D. Thesis, Grenoble University, Grenoble, France, 2011. [Google Scholar]
- Millington, I.; Funge, J. Artificial Intelligence for Games; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Nicotra, M.M.; Liao-McPherson, D.; Kolmanovsky, I.V. Embedding constrained model predictive control in a continuous-time dynamic feedback. IEEE Trans. Autom. Control 2019, 64, 1932–1946. [Google Scholar] [CrossRef] [Green Version]
- Nisan, N.; Roughgarden, T.; Tardos, E.; Vazirani, V.V. Algorithmic Game Theory; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Odu, G.O.; Charles-Owaba, O.E. Review of multi-criteria optimization methods—Theory and applications. IOSR J. Eng. 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Garone, E.; Schenato, L. A Distributed method for linear programming problems with box constraints and time-varying inequalities. IEEE Control. Syst. Lett. 2018, 3, 404–409. [Google Scholar] [CrossRef]
- Messac, A.; Mattson, C.A. Generating well-distributed sets of Pareto points for engineering design using physical programming. J. Optim. Eng. 2002, 3, 431–450. [Google Scholar] [CrossRef]
- Messac, A.; Sukam, C.P.; Melachrinoudis, E. Agregate objective functions and Pareto frontiers: Required relationships and practical implications. J. Optim. Eng. 2000, 1, 171–188. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Z.; Zheng, Z. A cooperative game approach for assessing the collision risk in multi-vessel encountering. Ocean Eng. 2019, 187, 106175. [Google Scholar] [CrossRef]
Ship j | Distance dj (nm) | Bearing νj (o) | Speed Vj (kn) | Course Ψj (o) |
---|---|---|---|---|
0 | - | - | 19 | 0 |
1 | 9.1 | 321 | 14 | 90 |
2 | 1.9 | 11 | 16 | 180 |
3 | 8.1 | 10 | 15 | 200 |
4 | 11.9 | 35 | 17 | 275 |
5 | 7.1 | 270 | 14 | 50 |
6 | 8.1 | 100 | 8 | 6 |
7 | 10.9 | 315 | 10 | 90 |
8 | 13.1 | 325 | 7 | 45 |
9 | 6.9 | 45 | 19 | 10 |
10 | 14.9 | 23 | 6 | 275 |
11 | 15.1 | 23 | 7 | 270 |
12 | 4.2 | 175 | 4 | 130 |
13 | 12.8 | 40 | 0 | 0 |
14 | 7.3 | 59 | 16 | 20 |
15 | 8.5 | 119 | 12 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowski, J. Review of Ship Collision Avoidance Guidance Algorithms Using Remote Sensing and Game Control. Remote Sens. 2022, 14, 4928. https://doi.org/10.3390/rs14194928
Lisowski J. Review of Ship Collision Avoidance Guidance Algorithms Using Remote Sensing and Game Control. Remote Sensing. 2022; 14(19):4928. https://doi.org/10.3390/rs14194928
Chicago/Turabian StyleLisowski, Józef. 2022. "Review of Ship Collision Avoidance Guidance Algorithms Using Remote Sensing and Game Control" Remote Sensing 14, no. 19: 4928. https://doi.org/10.3390/rs14194928
APA StyleLisowski, J. (2022). Review of Ship Collision Avoidance Guidance Algorithms Using Remote Sensing and Game Control. Remote Sensing, 14(19), 4928. https://doi.org/10.3390/rs14194928