# Improving Estimates and Change Detection of Forest Above-Ground Biomass Using Statistical Methods

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- (i)
- Spatial modelling: Spatial modelling techniques can account explicitly for the spatial correlation which is exhibited in satellite data.
- (ii)
- Combining data sources: Interpolation techniques to combine data sources available at different spatial scales.
- (iii)
- Model validation: Validation methods which can be used effectively for spatially correlated data.
- (iv)
- Uncertainty measurements: Methods used to appropriately recognise and visualize final estimates of error, when errors arise from multiple sources.
- (v)
- Change detection and quantification: Methods which may help to detect and quantify AGB change over time.

## 2. Background Information

#### 2.1. Field Data

#### 2.2. Optical Remote Sensing

Name | Type of Data | Years Available | Life Span | Revisit Period | Cost | Provider | Resolution |
---|---|---|---|---|---|---|---|

Sentinel 1 | SAR C-band | 2014-Present | Continuous | 6/12 days | Open access | ESA | 10m |

TanDEM-X | SAR X-band | 2010-Present | 5+ years | 11 days | Private | DLR and AirBus | 25 cm–40 m |

ALOS-2 PALSAR-2 | SAR L-band | 2014-Present | 5+ years | 14 days | Yearly mosaic open access | JAXA | 10m |

RADARSAT 1-2 | SAR C-band | 1995-Present | continuous | 24 days | Limited open access | CSA | 1–100 m |

BIOMASS | SAR P-band | 2023 Launch | 5.5 years | 3 days | Open access | ESA | 200 m |

Landsat 4–9 | Optical | 1984-Present | Continuous | 8 days | Open access | NASA | 30 m |

Sentinel-2 | Optical | 2015-Present | Continuous | 2–5 days | Open access | ESA | 10–60 m |

MODIS | Optical | 1999-Present | Beyond life span | 16 days | Open access | NASA | 250–1000 m |

ICESat-2 | Lidar | 2018-Present | 3–7 years | <33 days | Open access | NASA | 2 m |

GEDI | Lidar | 2018-Present | 2+ years | Not guaranteed | Open access | NASA | 25 m circular footprints |

#### 2.3. Synthetic Aperture Radar (SAR) Remote Sensing

#### 2.4. Lidar Remote Sensing

## 3. Data

Owner | Map | Reference | Spatial Resolution | Input Data | Data Used to Train or Validate Models | Method to Obtain Estimate | Method to Combine Data | Method Used to Validate Model | Uncertainty Estimates |
---|---|---|---|---|---|---|---|---|---|

ESA, JAXA | GlobBiomass 2010 | Santoro et al. [39] | 100 m | SAR C-band, SAR L-band, Optical | Spaceborne lidar, Forest Inventory field data | Water cloud model | Weighted combination of two predictions | RMSE | Standard deviation available |

NCEO | Africa Aboveground biomass map 2017 | Rodriguez-Veiga and Balzter [40] | 100 m | SAR L-band, and Optical Percent Tree cover | Spaceborne lidar, Airborne lidar | Random forest for canopy height, empirical model for AGB | Tree cover used to constrain predictions to areas with tree cover | Spatial k-fold cross validation | N/A |

NASA | GEDI Level 4A Footprint AGB 2020 | Duncanson et al. [41] | 25 m- available at footprints | Spaceborne lidar | Airborne lidar and field data | OLS regression | N/A | Geographic cross validation | N/A |

NASA | JPL Benchmark map | Saatchi et al. [42] | 1 km | Optical vegetation indices, Microwave, digital elevation map | Field data and GLAS lidar | Maximum entropy machine learning | Variables in model | Cross validation with separated data-set | Available at pixel level |

NASA | Mangrove canopy height and biomass map 2000 | Simard et al. [43] | 100 m | Digital elevation map (DEM), spaceborne lidar, | Field data | Allometric equations, regression models | N/A | RMSE | N/A |

ESA | CCI Biomass 2017, 2020 | Santoro [44] | 100 m | SAR C-band, SAR L-band | Spaceborne lidar | Water cloud model, Least squares regression and self calibration | Weighted combination of two predictions | RMSE | Standard deviation available |

_ | Tropical carbon density map 2003-14 | Baccini et al. [45], Baccini et al. [46] | 500 m | Optical mosaic imagery | Field data and GLAS lidar | Random forest | N/A | RMSE validation with separated data set | Available at national scale |

_ | Integrated pan-tropical biomass map | Avitabile et al. [47] | 1 km | multiple AGB maps | Sepated reference data-set | Regression model | Linear weighted average of predictors | RMSE with separated data set | Map available for most regions |

## 4. Large-Scale Spatial Modelling

#### 4.1. Current Global Modelling Approaches

#### 4.2. What Problems Are Faced When Modelling AGB Data?

#### 4.3. Methods to Model Spatial Data

## 5. Data Combination

#### 5.1. Why Use Combinations of Data Sources?

#### 5.2. How Are Global Data Sources Currently Combined?

#### 5.3. Problems Faced When Combining Data

#### 5.4. Methods to Tackle Spatial Misalignment

#### 5.5. Models to Improve Data Combination

## 6. Model Validation

#### 6.1. How Are Global Maps Currently Assessed?

^{2}) [78,80].

#### 6.2. Problems with These Validation Methods?

^{2}, estimated by cross-validation, only quantify the prediction error relative to the mean of the the predictive distribution and hence ignore the uncertainty of the prediction. Gelman et al. [80] therefore recommends to also consider the log score and the log likelihood. In particular, the log score is also useful for different non-normal distributions (e.g., in logistic regression) and when the focus is on the accuracy of the whole predictive distribution rather than just point estimates.

#### 6.3. Alternative Validation Methods

## 7. Uncertainty Measurements

#### 7.1. The Importance of Uncertainty Measurements

#### 7.2. How Is Uncertainty of Global Maps Currently Presented?

#### 7.3. Problems Faced When Providing Uncertainty Estimates

#### 7.4. Alternative Uncertainty Measurement Methods

## 8. Change Detection and Quantification

#### 8.1. The Importance of Change Detection

#### 8.2. How Is Global Biomass Change Currently Detected?

#### 8.3. Problems Faced When Detecting AGB Change

#### 8.4. How Can Change Detection Be Improved?

## 9. Discussion of Future Research and Potential Solutions

## 10. Summary

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

AGB | Above ground biomass |

AGC | Above-Ground Carbon |

ALOS | Advanced Land Observing Satellite |

CCI | ESA Climate Change Initiative |

CSA | Canadian Space Agency |

DBH | Diameter at Breast Height |

DEM | Digital Elevation Map |

DLR | German Aerospace Center |

ECV | Essential climate variable |

ESA | European Space Agency |

GAMs | Generalised Additive Models |

GEDI | Global Ecosystem Dynamics Investigation |

GLAS | Geoscience Laser Altimeter System |

GLM | generalised linear model |

GLMMs | Generalised Linear Mixed Models |

HV | Horizontal vertical |

INLA | Integrated nested Laplace approximation |

JAXA | Japan Aerospace Exploration Agency |

Lidar | Light Detection and Ranging |

LLO | Leave Location Out |

MAAP | Multi-Mission ALgorithm and Analysis Platform |

MCMC | MArkov Chain Monte Carlo |

MODIS | Moderate Resolution Imaging Spectroradiometer |

MSE | Mean Squared Error |

NASA | National Aeronautics and Space Administration |

NCEO | National Centre for Earth Observation |

NFIs | National Forest Inventories |

OLS | Ordinary Least Squares |

PALSAR-2 | Phased Array L-band Synthetic Aperture Radar |

REDD | Reducing Emissions from Deforestation and Forest Degradation |

RF | Random Forest |

RMSE | Root Mean Squared Error |

SAR | Synthetic Aperture Radar |

SDGs | Sustainable Development Goals |

SGCS | Sequential Gaussian Cosimulation |

SIS | Sequential indicator simulation |

SPDE | Stochastic Partial Differential Equations |

UAV | Unmanned Aerial Vehicle |

UN | United Nations |

## References

- FAO; UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar]
- UN SDG 15 Definitions. 2022. Available online: https://unstats.un.org/sdgs/metadata/files/Metadata-15-01-01.pdf (accessed on 23 July 2022).
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2021. Earth Syst. Sci. Data
**2022**, 14, 1917–2005. [Google Scholar] [CrossRef] - Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science
**2013**, 342, 850–853. [Google Scholar] [CrossRef] - Global Forest Watch. 2022. Available online: https://www.globalforestwatch.org/ (accessed on 23 July 2022).
- Qin, Y.; Xiao, X.; Wigneron, J.P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang.
**2021**, 11, 442–448. [Google Scholar] [CrossRef] - United Nations Reducing Emissions from Deforestation and Forest Degradation (REDD). 2021. Available online: https://www.unredd.net/about/what-is-redd-plus.html (accessed on 31 August 2021).
- Mitchard, E.T. The tropical forest carbon cycle and climate change. Nature
**2018**, 559, 527–534. [Google Scholar] [CrossRef] - United Nations Sustainable Development Goals. 2022. Available online: https://sdgs.un.org/goals (accessed on 13 May 2022).
- United Nations Paris Agreement. 2015. Available online: https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27&clang=_en (accessed on 13 May 2022).
- Voigt, C.; Ferreira, F. The Warsaw Framework for REDD+: Implications for national implementation and access to results-based finance. Carbon Clim. Law Rev.
**2015**, 9, 113–129. [Google Scholar] - Herold, M.; Carter, S.; Avitabile, V.; Espejo, A.B.; Jonckheere, I.; Lucas, R.; McRoberts, R.E.; Næsset, E.; Nightingale, J.; Petersen, R.; et al. The role and need for space-based forest biomass-related measurements in environmental management and policy. Surv. Geophys.
**2019**, 40, 757–778. [Google Scholar] [CrossRef] - Ravindranath, N.H.; Ostwald, M. Carbon Inventory Methods: Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 29. [Google Scholar]
- Morison, J.I. Forest Research—Climate Change and Forests Report. 2020. Available online: https://www.forestresearch.gov.uk/documents/7910/20_0039_Leaflet_CC_factsheet_Forests_wip06_ACC.pdf (accessed on 31 August 2021).
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; Food and Agriculture Organization: Rome, Italy, 1997; Volume 134. [Google Scholar]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Giménez, M.G.; Ballester, M.J.Y.; Romero, B.R.; López, A.S.; De Grandi, E.C.; Dutta, O.; Bañuls, E.P.; Nieto, A.F.; Ramírez, P.P.; Carrillo, Á.F.; et al. Assessment of Innovative Technologies and Their Readiness for Remote Sensing-Based Estimation of Forest Carbon Stocks and Dynamics 2021. Available online: https://openknowledge.worldbank.org/handle/10986/35806 (accessed on 30 June 2022).
- Mitchard, E.T.; Feldpausch, T.R.; Brienen, R.J.; Lopez-Gonzalez, G.; Monteagudo, A.; Baker, T.R.; Lewis, S.L.; Lloyd, J.; Quesada, C.A.; Gloor, M.; et al. Markedly divergent estimates of A mazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr.
**2014**, 23, 935–946. [Google Scholar] [CrossRef] - Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens.
**2006**, 27, 1297–1328. [Google Scholar] [CrossRef] - Chave, J.; Davies, S.J.; Phillips, O.L.; Lewis, S.L.; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T.R.; Coomes, D.; Disney, M.; et al. Ground data are essential for biomass remote sensing missions. Surv. Geophys.
**2019**, 40, 863–880. [Google Scholar] [CrossRef] - Forest Research—Climate Change and Forests Report. 2021. Available online: https://www.forestresearch.gov.uk/documents/2726/FCNFI113.pdf (accessed on 13 May 2022).
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia
**2005**, 145, 87–99. [Google Scholar] - Muukkonen, P. Generalized allometric volume and biomass equations for some tree species in Europe. Eur. J. For. Res.
**2007**, 126, 157–166. [Google Scholar] [CrossRef] - Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol.
**2014**, 20, 3177–3190. [Google Scholar] [CrossRef] - Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens.
**2020**, 1, 100002. [Google Scholar] [CrossRef] - Emery, B.; Camps, A. Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- NASA Landsat Mission Details. 2022. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-bands/ (accessed on 13 May 2022).
- ESA Sentinel-2 Mission Details. 2022. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 13 May 2022).
- Airbus Pléiades Neo Mission Details. 2022. Available online: https://www.intelligence-airbusds.com/imagery/constellation/pleiades-neo/ (accessed on 13 May 2022).
- ESA Sentinel-1 Mission Details. 2022. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1 (accessed on 13 May 2022).
- JAXA ALOS-PALSAR-2 Mission Details. 2022. Available online: https://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.htm (accessed on 13 May 2022).
- ESA BIOMASS Mission Details. 2022. Available online: https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Biomass (accessed on 13 May 2022).
- Mitchard, E.T.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett.
**2009**, 36, L23401. [Google Scholar] [CrossRef] - Mette, T.; Papathanassiou, K.; Hajnsek, I. Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain. In Proceedings of the IGARSS 2004—2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 1, pp. 511–514. [Google Scholar]
- ESA ICESat-2 Mission Details. 2022. Available online: https://icesat-2.gsfc.nasa.gov/ (accessed on 13 May 2022).
- NASA GEDI Mission Details. 2022. Available online: https://gedi.umd.edu/ (accessed on 13 May 2022).
- ESA Multi-Mission Algorithm and Analysis Platform (MAAP). 2021. Available online: https://earthdata.nasa.gov/maap-biomass/products/global (accessed on 13 May 2022).
- Albinet, C.; Whitehurst, A.S.; Jewell, L.A.; Bugbee, K.; Laur, H.; Murphy, K.J.; Frommknecht, B.; Scipal, K.; Costa, G.; Jai, B.; et al. A joint ESA-NASA multi-mission algorithm and analysis platform (MAAP) for biomass, NISAR, and GEDI. Surv. Geophys.
**2019**, 40, 1017–1027. [Google Scholar] [CrossRef] - Santoro, M.; Cartus, O.; Carvalhais, N.; Rozendaal, D.; Avitabile, V.; Araza, A.; De Bruin, S.; Herold, M.; Quegan, S.; Rodríguez-Veiga, P.; et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data
**2021**, 13, 3927–3950. [Google Scholar] [CrossRef] - Rodriguez-Veiga, P.; Balzter, H. Africa Aboveground Biomass Map for 2017. 2021. Available online: https://leicester.figshare.com/articles/dataset/Africa_Aboveground_Biomass_map_for_2017/15060270/1 (accessed on 13 May 2022).
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ.
**2022**, 270, 112845. [Google Scholar] [CrossRef] - Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA
**2011**, 108, 9899–9904. [Google Scholar] [CrossRef] - Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci.
**2019**, 12, 40–45. [Google Scholar] [CrossRef] - Santoro, M. CCI Biomass Algorithm Theoretical Basis Document Year 3. 2021. Available online: https://climate.esa.int/media/documents/D2_2_Algorithm_Theoretical_Basis_Document_ATBD_V3.0_20210614_hkrml_SQ_MS.pdf (accessed on 13 May 2022).
- Baccini, A.; Goetz, S.; Walker, W.; Laporte, N.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.; Dubayah, R.; Friedl, M.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang.
**2012**, 2, 182–185. [Google Scholar] [CrossRef] - Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science
**2017**, 358, 230–234. [Google Scholar] [CrossRef] [PubMed] - Avitabile, V.; Herold, M.; Heuvelink, G.B.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol.
**2016**, 22, 1406–1420. [Google Scholar] [CrossRef] [PubMed] - Rodriguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying forest biomass carbon stocks from space. Curr. For. Rep.
**2017**, 3, 1–18. [Google Scholar] [CrossRef] - Cressie, N. Statistics for Spatial Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Cressie, N.; Calder, C.A.; Clark, J.S.; Hoef, J.M.V.; Wikle, C.K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl.
**2009**, 19, 553–570. [Google Scholar] [CrossRef] [PubMed] - Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ
**2019**, 7, e6876. [Google Scholar] [CrossRef] [PubMed] - Saarela, S.; Holm, S.; Healey, S.P.; Andersen, H.E.; Petersson, H.; Prentius, W.; Patterson, P.L.; Næsset, E.; Gregoire, T.G.; Ståhl, G. Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat data. Remote Sens.
**2018**, 10, 1832. [Google Scholar] - Patterson, P.L.; Healey, S.P.; Ståhl, G.; Saarela, S.; Holm, S.; Andersen, H.E.; Dubayah, R.O.; Duncanson, L.; Hancock, S.; Armston, J.; et al. Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation. Environ. Res. Lett.
**2019**, 14, 065007. [Google Scholar] [CrossRef] - Gelfand, A.E. Hierarchical modeling for spatial data problems. Spat. Stat.
**2012**, 1, 30–39. [Google Scholar] [CrossRef] - Clark, J.S.; Gelfand, A.E. Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications; OUP Oxford: Oxford, UK, 2006. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data; CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B
**2009**, 71, 319–392. [Google Scholar] [CrossRef] - Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B
**2011**, 73, 423–498. [Google Scholar] [CrossRef] - Bakka, H.; Rue, H.; Fuglstad, G.A.; Riebler, A.; Bolin, D.; Illian, J.; Krainski, E.; Simpson, D.; Lindgren, F. Spatial modeling with R-INLA: A review. Wiley Interdiscip. Rev. Comput. Stat.
**2018**, 10, e1443. [Google Scholar] [CrossRef] - Krainski, E.; Gómez-Rubio, V.; Bakka, H.; Lenzi, A.; Castro-Camilo, D.; Simpson, D.; Lindgren, F.; Rue, H. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA; CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Lindgren, F.; Bolin, D.; Rue, H. The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running. Spat. Stat.
**2022**, 50, 100599. [Google Scholar] - Beloconi, A.; Probst-Hensch, N.M.; Vounatsou, P. Spatio-temporal modelling of changes in air pollution exposure associated with the COVID-19 lockdown measures across Europe. Sci. Total. Environ.
**2021**, 787, 147607. [Google Scholar] - Heuvelink, G.B.; Webster, R. Spatial statistics and soil mapping: A blossoming partnership under pressure. Spat. Stat.
**2022**, 50, 100639. [Google Scholar] [CrossRef] - Brenning, A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5372–5375. [Google Scholar]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw.
**2018**, 101, 1–9. [Google Scholar] - Persson, H.J.; Jonzén, J.; Nilsson, M. Combining TanDEM-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume. Int. J. Appl. Earth Obs. Geoinf.
**2021**, 96, 102275. [Google Scholar] - Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sens.
**2021**, 13, 1535. [Google Scholar] [CrossRef] - Atkinson, P.M.; Stein, A.; Jeganathan, C. Spatial sampling, data models, spatial scale and ontologies: Interpreting spatial statistics and machine learning applied to satellite optical remote sensing. Spat. Stat.
**2022**, 50, 100646. [Google Scholar] - Poggio, L.; Gimona, A. Downscaling and correction of regional climate models outputs with a hybrid geostatistical approach. Spat. Stat.
**2015**, 14, 4–21. [Google Scholar] [CrossRef] - Babcock, C.; Finley, A.O.; Andersen, H.E.; Pattison, R.; Cook, B.D.; Morton, D.C.; Alonzo, M.; Nelson, R.; Gregoire, T.; Ene, L.; et al. Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations. Remote Sens. Environ.
**2018**, 212, 212–230. [Google Scholar] [CrossRef] - Rayner, N.A.; Auchmann, R.; Bessembinder, J.; Brönnimann, S.; Brugnara, Y.; Capponi, F.; Carrea, L.; Dodd, E.M.; Ghent, D.; Good, E.; et al. The EUSTACE project: Delivering global, daily information on surface air temperature. Bull. Am. Meteorol. Soc.
**2020**, 101, E1924–E1947. [Google Scholar] - Rue, H.; Martino, S.; Lindgren, F.; Simpson, D.; Riebler, A. R-INLA: Approximate Bayesian Inference Using Integrated Nested Laplace Approximations. 2013. Available online: http://www.r-inla.org (accessed on 23 July 2022).
- Bolin, D.; Lindgren, F. Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann. Appl. Stat.
**2011**, 2011 1, 523–550. [Google Scholar] [CrossRef] - James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Valbuena, R.; Hernando, A.; Manzanera, J.; Görgens, E.; Almeida, D.; Mauro, F.; García-Abril, A.; Coomes, D. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecol. Model.
**2017**, 366, 15–26. [Google Scholar] [CrossRef] - Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ploton, P.; Barbier, N.; Couteron, P.; Antin, C.; Ayyappan, N.; Balachandran, N.; Barathan, N.; Bastin, J.F.; Chuyong, G.; Dauby, G.; et al. Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sens. Environ.
**2017**, 200, 140–153. [Google Scholar] [CrossRef] - Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography
**2017**, 40, 913–929. [Google Scholar] [CrossRef] - Gelman, A.; Hill, J.; Vehtari, A. Regression and Other Stories; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; Crowther, T.W.; et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys.
**2019**, 40, 979–999. [Google Scholar] [CrossRef] - Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Labriere, N.; Rodriguez-Veiga, P.; Avitabile, V.; Santoro, M.; Mitchard, E.T.; Ryan, C.M.; et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ.
**2022**, 272, 112917. [Google Scholar] [CrossRef] - Wadoux, A.M.C.; Heuvelink, G.B.; De Bruin, S.; Brus, D.J. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Model.
**2021**, 457, 109692. [Google Scholar] [CrossRef] - Meyer, H.; Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol.
**2021**, 12, 1620–1633. [Google Scholar] [CrossRef] - Romijn, E.; De Sy, V.; Herold, M.; Böttcher, H.; Roman-Cuesta, R.M.; Fritz, S.; Schepaschenko, D.; Avitabile, V.; Gaveau, D.; Verchot, L.; et al. Independent data for transparent monitoring of greenhouse gas emissions from the land use sector—What do stakeholders think and need? Environ. Sci. Policy
**2018**, 85, 101–112. [Google Scholar] [CrossRef] - Saarela, S.; Holm, S.; Grafström, A.; Schnell, S.; Næsset, E.; Gregoire, T.G.; Nelson, R.F.; Ståhl, G. Hierarchical model-based inference for forest inventory utilizing three sources of information. Ann. For. Sci.
**2016**, 73, 895–910. [Google Scholar] [CrossRef] - Zakeri, F.; Mariethoz, G. A review of geostatistical simulation models applied to satellite remote sensing: Methods and applications. Remote Sens. Environ.
**2021**, 259, 112381. [Google Scholar] [CrossRef] - Beloconi, A.; Vounatsou, P. Bayesian geostatistical modelling of high-resolution NO2 exposure in Europe combining data from monitors, satellites and chemical transport models. Environ. Int.
**2020**, 138, 105578. [Google Scholar] [CrossRef] - Beloconi, A.; Chrysoulakis, N.; Lyapustin, A.; Utzinger, J.; Vounatsou, P. Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products. Environ. Int.
**2018**, 121, 57–70. [Google Scholar] [CrossRef] [PubMed] - De Bruin, S. Predicting the areal extent of land-cover types using classified imagery and geostatistics. Remote Sens. Environ.
**2000**, 74, 387–396. [Google Scholar] [CrossRef] - Meinshausen, N.; Ridgeway, G. Quantile regression forests. J. Mach. Learn. Res.
**2006**, 7, 983–999. [Google Scholar] - Vaysse, K.; Lagacherie, P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma
**2017**, 291, 55–64. [Google Scholar] [CrossRef] - Lucchesi, L.R.; Kuhnert, P.M.; Wikle, C.K. Vizumap: An R package for visualising uncertainty in spatial data. J. Open Source Softw.
**2021**, 6, 2409. [Google Scholar] [CrossRef] - Taylor, A.R.; Watson, J.A.; Buckee, C.O. Pixelate to communicate: Visualising uncertainty in maps of disease risk and other spatial continua. arXiv
**2020**, arXiv:2005.11993. [Google Scholar] - Bolin, D.; Lindgren, F. Quantifying the uncertainty of contour maps. J. Comput. Graph. Stat.
**2017**, 26, 513–524. [Google Scholar] [CrossRef] - Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens.
**2004**, 25, 2365–2401. [Google Scholar] [CrossRef] - Hansen, J.N.; Mitchard, E.T.; King, S. Detecting Deforestation from Sentinel-1 Data in the Absence of Reliable Reference Data. arXiv
**2022**, arXiv:2205.12131. [Google Scholar] - Hostert, P.; Griffiths, P.; Linden, S.v.d.; Pflugmacher, D. Time series analyses in a new era of optical satellite data. In Remote Sensing Time Series; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–41. [Google Scholar]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ.
**2019**, 232, 111181. [Google Scholar] [CrossRef] - Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ.
**2010**, 114, 106–115. [Google Scholar] [CrossRef] - Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ.
**2010**, 114, 2897–2910. [Google Scholar] [CrossRef] - Reiche, J.; De Bruin, S.; Hoekman, D.; Verbesselt, J.; Herold, M. A Bayesian approach to combine Landsat and ALOS PALSAR time series for near real-time deforestation detection. Remote Sens.
**2015**, 7, 4973–4996. [Google Scholar] [CrossRef] - Monteiro, A.; Menezes, R.; Silva, M.E. Modelling spatio-temporal data with multiple seasonalities: The NO
_{2}Portuguese case. Spat. Stat.**2017**, 22, 371–387. [Google Scholar] [CrossRef]

**Figure 1.**Satellite imagery downloaded using Google Earth Engine over the same location in Black Forest, Germany [centre point: 48.528N, 8.228E]. (

**a**) Lidar, GEDI. Footprints of data are shown by coloured dots ranging from pink (low height) to blue (large height). (

**b**) SAR HV, ALOS PALSAR-2 annual mosaic, shown with no filtering. No backscatter is black and high backscatter is white. (

**c**) Optical Imagery, Sentinel-2. Bands 2, 3 and 4 are shown to create a RGB image, with a 90% stretch applied. (

**a**) GEDI footprint data, lidar imagery; (

**b**) ALOS-PALSAR-2 annual mosaic, SAR imagery; (

**c**) Sentinel-2 bands: RGB, optical imagery.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Turton, A.E.; Augustin, N.H.; Mitchard, E.T.A. Improving Estimates and Change Detection of Forest Above-Ground Biomass Using Statistical Methods. *Remote Sens.* **2022**, *14*, 4911.
https://doi.org/10.3390/rs14194911

**AMA Style**

Turton AE, Augustin NH, Mitchard ETA. Improving Estimates and Change Detection of Forest Above-Ground Biomass Using Statistical Methods. *Remote Sensing*. 2022; 14(19):4911.
https://doi.org/10.3390/rs14194911

**Chicago/Turabian Style**

Turton, Amber E., Nicole H. Augustin, and Edward T. A. Mitchard. 2022. "Improving Estimates and Change Detection of Forest Above-Ground Biomass Using Statistical Methods" *Remote Sensing* 14, no. 19: 4911.
https://doi.org/10.3390/rs14194911