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Abstract: Forests store approximately as much carbon as is in the atmosphere, with potential to
take in or release carbon rapidly based on growth, climate change and human disturbance. Above-
ground biomass (AGB) is the largest carbon pool in most forest systems, and the quickest to change
following disturbance. Quantifying AGB on a global scale and being able to reliably map how it
is changing, is therefore required for tackling climate change by targeting and monitoring policies.
AGB can be mapped using remote sensing and machine learning methods, but such maps have
high uncertainties, and simply subtracting one from another does not give a reliable indication of
changes. To improve the quantification of AGB changes it is necessary to add advanced statistical
methodology to existing machine learning and remote sensing methods. This review discusses the
areas in which techniques used in statistical research could positively impact AGB quantification.
Nine global or continental AGB maps, and a further eight local AGB maps, were investigated in detail
to understand the limitations of techniques currently used. It was found that both modelling and
validation of maps lacked spatial consideration. Spatial cross validation or other sampling methods,
which specifically account for the spatial nature of this data, are important to introduce into AGB
map validation. Modelling techniques which capture the spatial nature should also be used. For
example, spatial random effects can be included in various forms of hierarchical statistical models.
These can be estimated using frequentist or Bayesian inference. Strategies including hierarchical
modelling, Bayesian inference, and simulation methods can also be applied to improve uncertainty
estimation. Additionally, if these uncertainties are visualised using pixelation or contour maps this
could improve interpretation. Improved uncertainty, which is commonly between 30% and 40%,
is in addition needed to produce accurate change maps which will benefit policy decisions, policy
implementation, and our understanding of the carbon cycle.

Keywords: above-ground biomass; remote sensing; statistics; modelling; spatial modelling; machine
learning; uncertainty propagation; validation; change detection; carbon cycle; forest degradation

1. Introduction

Forests cover 31% of the global land area, which is around four billion hectares [1].
Where global land area is defined as area under national sovereignty, excluding area under
inland waters and coastal waters [2]. These forests are an important carbon pool which
actively takes in and releases large amounts of carbon dioxide, making a considerable
impact on the amount of carbon dioxide in the atmosphere and its year-to-year variation [3].
FAO and UNEP [1] suggests deforestation occurs at a rate of around 10 million hectares per
year, for 2015–2020. Meanwhile, other sources suggests tree cover loss of around 30.6 million
hectares over the same time period [4,5]. Forest degradation also has a significant impact
on carbon levels [6]. Deforestation and forest degradation account for approximately 11%
of anthropogenic carbon emissions, second only to the energy sector, these carbon emission
contribute heavily towards climate change [7]. However, forests also mitigate climate
change, by overall taking in about a quarter of the carbon released by humans (acting as a
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carbon sink). Climate change itself also poses a major risk to the health of forests, and their
ability to continue acting as a carbon sink [1].

Forests store a large amount of carbon which can cause them to become carbon sinks
as they grow or become carbon sources through deforestation. Tropical forests are soon
likely to become a carbon source, owing to continued forest loss and climate change [8].
To understand climate change and mitigate global warming, it is essential to quantify the
amount of carbon held in these forests, and detect changes occurring.

Monitoring carbon levels is also an important part of global policy making. Global
forests are highly relevant to the 13th and 15th goals of the United Nations (UN) Sustainable
Development Goals (SGDs). These are focused on ‘Climate Action’ and ‘Life on Land’
respectively [9]. Additionally, the UN Paris Climate Agreement agrees to limit global
warming to less than 2 degrees Celsius above pre-industrial levels, and preferably less
than 1.5 degrees [10]. To achieve these SDGs, reducing emissions from the forest sector
is essential. A mechanism developed by UN to reduce emissions is the UN Reducing
Emissions from Deforestation and Forest Degradation (REDD+) program [11]. This offers
incentives to developing countries to reduce emissions from forested lands and invest in
low-carbon paths to sustainable development [7]. Transparent reporting of changes in
forest carbon are required for such international agreements. AGB can also be considered
an essential climate variable (ECV), which can be important to characterize the Earth’s
climate system [12].

Above-ground biomass (AGB) is a good indicator of the amount of carbon held in
a forest above the ground and is commonly used for forest monitoring. Above-ground
biomass (AGB) is defined as all living biomass above the soil including stem, stump,
branches, bark, seeds, and foliage [13]. Around 50% of the dry weight of trees, otherwise
known as biomass, is carbon [14,15]. In some forests, the vast majority of the carbon is
instead stored belowground as peat. However, this is hard to monitor because satellites
can see only above ground and so this study will focus on AGB estimation.

Remote sensing is the process of acquiring information about the Earth’s land from a
distance, most commonly this is done using aircraft or satellites, such as those shown in
Table 1. Remote sensing has increasingly been used for forest monitoring and management
alongside field surveys. Remote sensing is a non-destructive method that can be used for
AGB estimation. It requires less manual work than forest inventory plots, covers larger
areas, and can provide data for inaccessible areas. Satellites also can offer repeated images
using the same sensors over time and thus allows us to detect change more efficiently [16].
However, currently the measurement, reporting, and verification of forest carbon is a
lengthy and expensive process. It is hoped that carbon estimation from remote sensing data
will become quicker and that uncertainties can be quantified and decreased [17]. Current
industry maps, such as those shown in Table 2, have high uncertainty, for individual pixels
errors can be around 30–40% [17], where pixel error is defined by comparing the estimated
value of a pixel from remote sensing data to the estimated value of a forest inventory
plot underneath. Differences between maps also highlight that uncertainties considerably
exceed the reported uncertainties in certain regions [18].

AGB can been estimated using various forms of remote sensing data from both aircraft
and satellites. To perform predictions on a global scale the most appropriate remote sensing
form is satellite data, with aircraft of Unmanned Aerial Vehicle (UAV) data used for testing
new methods, as a high resolution calibration/validation dataset for satellite-based maps,
or as a ‘stepping stone’ dataset between field data and satellite data. Currently there are a
range of satellites which can be used to produce AGB maps. The main forms of satellite
image used for estimation purposes are: optical, synthetic-aperture radar (SAR), and light
detection and ranging (lidar). Satellite sensors can detect various characteristics of the
forest area closely linked to AGB, such as: tree height and vegetation levels.

This review will focus an a number of topics for which it is expected that statistical and
machine learning methods will make improvements to the current process. The statistical
topics covered are:
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(i) Spatial modelling: Spatial modelling techniques can account explicitly for the spatial
correlation which is exhibited in satellite data.

(ii) Combining data sources: Interpolation techniques to combine data sources available
at different spatial scales.

(iii) Model validation: Validation methods which can be used effectively for spatially
correlated data.

(iv) Uncertainty measurements: Methods used to appropriately recognise and visualize
final estimates of error, when errors arise from multiple sources.

(v) Change detection and quantification: Methods which may help to detect and quantify
AGB change over time.

This study is unique due to the statistical approach taken when reviewing AGB
maps. The investigation has focused on the statistical methods applied to each data set
unlike other reviews undertaken. Due to the wide availability of data it is important
to understand how methods can be improved to effectively make use of this data. A
previous study Lu [19] discusses the models used to estimate AGB, however is focused on
the overall data used for estimation and overall problems facing the field. More recently,
Giménez et al. [17] evaluates the AGB estimation field. They indicate that statistical and
computational methods are likely to improve estimation, but do not provide great detail on
how this will occur.

This investigation is important in facilitating researchers, from both the statistical
and remote sensing communities, to progress the AGB mapping field. It should provide
researchers with the background knowledge and further reading needed to motivate
research into the most necessary topics and problems faced in the field of AGB mapping.

2. Background Information
2.1. Field Data

In most countries, there exist National Forest Inventories (NFIs) which monitor the
extent of forests within the nation using field surveys. These occur at regular intervals and
can provide extensive information about key forest attributes such as: size, species, and
condition. These data are used to find estimates for stand volume and biomass. Ground
data is essential for the creation of effective AGB maps and for validation purposes [20].

Historically, AGB has been estimated from field surveys using a methodology known
as the harvest method or destructive method. This involves felling trees and taking
measurements including: species, diameter at breast height (DBH), wood density, and
height. These trees are then oven dried and weighed, giving their biomass [15]. These data
sets can be used to find regression coefficients for models such as in Equation (1) [21,22].

AGB = β0 + β1 · Height · DBH2 (1)

These models are known as allometric equations and are usually developed for particu-
lar regions or species of tree. Different allometric equations are developed because different
species and regions can have very different carbon levels with the same characteristics.
Once the model has been developed, these can be applied to (non-destructive) inventory
measurements to give biomass estimates for trees, and thus whole sample plots. Various
allometric equations have been developed for a range of species and regions [22].

Equations are openly available for temporal zones of Europe from and for the tropical
regions [23,24]. For the creation of AGB maps using GEDI lidar data, more stand level
allometric equations have been produced by continent and general plant function types,
such as broad-leaf trees [25].

2.2. Optical Remote Sensing

Optical satellite images are obtained by passive sensors which rely on reflectance of
solar energy back to the sensor. These data are in the visible and near-infrared spectrum [26].
Optical data are provided in the form of multi band images, where each band represents
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a region of the electromagnetic spectrum within the visible and near-infrared spectrum.
Optical imagery most closely represents that which is visible from the naked eye.

Generally, a multi-spectral image is provided with a number of spectral bands, for
example Landsat-9 has 11 available spectral bands [27]. Vegetation indices can also be
developed from optical imagery to inform AGB estimation. Healthy vegetation exhibits
unique patterns within the multi-spectral bands. Vegetation indices, such as such as
normalized difference vegetation index (NDVI), make use of these patterns and often use a
transformation of two bands of information.

Optical imagery is widely and publicly available from satellites including: Landsat
(15–100 m resolution) and Sentinel-2 (10–60 m resolution) [27,28]. Higher resolution optical
imagery is also available from private satellites such as Pléiades Neo (30 cm resolution)
owned by Airbus and Worldview-3 operated by Maxar Technologies [29].

Optical imagery is useful to map forest land cover and predict biomass due to its
wide availability. In particular, change can be observed through optical imagery since long
time series of optical data are available with a short temporal resolution [26]. For example,
Landsat has data available from the 1970s and has a 16 day revisit period, shown in Table 1.
Optical imagery is also often used in conjunction with other data sources.

Table 1. Satellite data sources available for future AGB prediction.

Name Type of Data Years
Available Life Span Revisit Period Cost Provider Resolution

Sentinel 1 SAR C-band 2014-Present Continuous 6/12 days Open access ESA 10m

TanDEM-X SAR X-band 2010-Present 5+ years 11 days Private DLR and
AirBus 25 cm–40 m

ALOS-2
PALSAR-2 SAR L-band 2014-Present 5+ years 14 days Yearly mosaic

open access JAXA 10m

RADARSAT
1-2 SAR C-band 1995-Present continuous 24 days Limited open

access CSA 1–100 m

BIOMASS SAR P-band 2023 Launch 5.5 years 3 days Open access ESA 200 m

Landsat 4–9 Optical 1984-Present Continuous 8 days Open access NASA 30 m

Sentinel-2 Optical 2015-Present Continuous 2–5 days Open access ESA 10–60 m

MODIS Optical 1999-Present Beyond life
span 16 days Open access NASA 250–1000 m

ICESat-2 Lidar 2018-Present 3–7 years <33 days Open access NASA 2 m

GEDI Lidar 2018-Present 2+ years Not
guaranteed Open access NASA 25 m circular

footprints

2.3. Synthetic Aperture Radar (SAR) Remote Sensing

Unlike optical satellites, SAR satellites actively emit microwave radiation to survey
the Earth. The amount of radiation scattered back increases as the volume of vegetation in
an area increases. This makes SAR very useful for forest inventory. Different SAR satellites
use different wave lengths which are sensitive to different vegetation types. Shorter wave
lengths C and X band are sensitive to small vegetation structures such as leaves and twigs.
Meanwhile, longer wavelengths such as L and P band are sensitive to large trunks. Longer
wavelengths are more useful for above-ground biomass estimation in forests.

SAR data is available from various data sources at wavelengths within C, X and L
bands. This includes Sentinel-1 providing C-band data (>5 m resolution), and ALOS-2
PALSAR-2 providing L-band data (10m resolution) [30,31]. ESA is expected to launch the
BIOMASS satellite in 2023 which will provide P-band data-sets which will be much more
useful for AGB prediction in areas with high biomass density [32]. These satellites are
shown in Table 1.

SAR is generally used as the primary form of data to predict biomass as it has been
found to have a strong relationship with AGB. Backscatter rapidly increases with AGB until
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it reaches a saturation point of around 100–150 Mg/ha for L-band data [33]. This saturation
point makes it difficult to map densely forested areas accurately. The saturation point
increases for longer wave SAR such as P-band and so it is expected that the future BIOMASS
satellite will provide improved AGB predictions. It is also possible to use SAR inteferometry
and tomography, a measurement method using the phenomenon of interference of waves,
to find estimates of forest height through model-based inversions [34].

2.4. Lidar Remote Sensing

Similarly to SAR satellites, lidar instruments are active sensors. They transmit laser
light directly down to the target, some of which is scattered and reflected back to the instru-
ment, this is then analysed by the instrument. The change in properties of the light and the
time taken to return enables properties of the target and its distance from the instrument
to be determined. A representation of a forest can be built with structural parameters
estimated directly. Lidar offers more detailed responses than the other methods given.

Lidar is available on a local scale through airborne data from planes and UAVs. Lidar
is also available from the satellite ICESat-2 and the International Space Station-borne
instrument GEDI, which were both launched in 2018 [35,36] and are still operating at the
time of writing.Both satellites are shown in Table 1.

Lidar data is very useful for AGB mapping as it can map the height of forests with
very high accuracy. Height can then be used to estimate biomass through allometric
equations as outlined in Section 2.1. However, lidar data-sets are only available sparsely
and in discontinuous footprints along strips when using satellite sources of lidar, and
while data from aircraft/UAVs are continuous and often very high resolution (<1 m),
the expense of data collection means they are collected rarely in space and time. This
means advanced techniques are needed to use lidar for large scale continuous mapping.
Due to this lidar is often used as a supplementary data source to improve maps or as a
calibration/validation data-set.

3. Data

This review will investigate the statistical methods used to create current AGB maps
which are available on a continental or global scale. In 2021, the European Space Agency
(ESA) and National Aeronautics and Space Administration (NASA) collaboratively intro-
duced the first open source platform for global above-ground biomass maps, known as
the Multi-Mission Algorithm and Analysis Platform (MAAP) [37]. This platform is hoped
to encourage new research and algorithm development in the global scientific commu-
nity [38], and does include most maps regularly used by the research community. For
these reasons, the maps available from this portal will be the main focus of investigation
and discussion. Other high profile continental or global maps have also been included in
this review. There are nine maps which were investigated thoroughly, shown in Table 2.
Other AGB maps produced on a smaller regional scale or in the development phase are
referenced throughout this review however then will not be included within this table. In
total seventeen AGB maps were investigated here.

Table 2. Data and methodology used to produce global AGB maps.

Owner Map Reference Spatial
Resolution Input Data

Data Used
to Train or
Validate
Models

Method to
Obtain

Estimate

Method to
Combine

Data

Method
Used to
Validate
Model

Uncertainty
Estimates

ESA, JAXA GlobBiomass
2010

Santoro et al.
[39] 100 m

SAR C-band,
SAR L-band,

Optical

Spaceborne
lidar, Forest
Inventory
field data

Water cloud
model

Weighted
combination

of two
predictions

RMSE
Standard
deviation
available
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Table 2. Cont.

Owner Map Reference Spatial
Resolution Input Data

Data Used
to Train or
Validate
Models

Method to
Obtain

Estimate

Method to
Combine

Data

Method
Used to
Validate
Model

Uncertainty
Estimates

NCEO

Africa
Above-
ground
biomass

map 2017

Rodriguez-
Veiga and

Balzter [40]
100 m

SAR L-band,
and Optical
Percent Tree

cover

Spaceborne
lidar,

Airborne
lidar

Random
forest for
canopy
height,

empirical
model for

AGB

Tree cover
used to

constrain
predictions

to areas with
tree cover

Spatial
k-fold cross
validation

N/A

NASA
GEDI Level

4A Footprint
AGB 2020

Duncanson
et al. [41]

25 m-
available at
footprints

Spaceborne
lidar

Airborne
lidar and
field data

OLS
regression N/A

Geographic
cross

validation
N/A

NASA
JPL

Benchmark
map

Saatchi et al.
[42] 1 km

Optical
vegetation
indices,

Microwave,
digital

elevation
map

Field data
and GLAS

lidar

Maximum
entropy
machine
learning

Variables in
model

Cross
validation

with
separated
data-set

Available at
pixel level

NASA

Mangrove
canopy

height and
biomass

map 2000

Simard et al.
[43] 100 m

Digital
elevation

map (DEM),
spaceborne

lidar,

Field data

Allometric
equations,
regression

models

N/A RMSE N/A

ESA CCI Biomass
2017, 2020 Santoro [44] 100 m SAR C-band,

SAR L-band
Spaceborne

lidar

Water cloud
model, Least

squares
regression

and self
calibration

Weighted
combination

of two
predictions

RMSE
Standard
deviation
available

_

Tropical
carbon

density map
2003-14

Baccini et al.
[45,46] 500 m

Optical
mosaic

imagery

Field data
and GLAS

lidar

Random
forest N/A

RMSE
validation

with
separated
data set

Available at
national

scale

_

Integrated
pan-tropical

biomass
map

Avitabile
et al. [47] 1 km multiple

AGB maps

Sepated
reference
data-set

Regression
model

Linear
weighted
average of
predictors

RMSE with
separated
data set

Map
available for
most regions

4. Large-Scale Spatial Modelling

Global satellite remote sensing data is used to estimate the underlying quantity of
AGB. These estimates can be produced in areas where these satellite data are available.
Models are developed using a set of training data for which the AGB values are known
and satellite data are available. These training data sets usually make use of field data
or local airborne lidar data, both of which provide accurate enough estimates of AGB to
train models.

4.1. Current Global Modelling Approaches

There are very few cases of spatial and temporal statistical models being used for
AGB prediction and this is an active field of research likely to improve AGB mapping [17].
The majority of global maps produced for AGB prediction use simple multivariate linear
models or generalised linear models (GLMs). For example, Duncanson et al. [41] maps are
produced using ordinary least squares (OLS) models, i.e., linear models. Simard et al. [43]
also uses linear models. The water cloud model, a non-linear model, is commonly used in
biomass estimation. The water cloud model is used within the ESA’s GlobBiomass and CCI
Biomass maps [39,44].

There are also examples of global maps using machine learning methodology.
Rodriguez-Veiga et al. [48] uses a combination of random forest and empirical modelling
to predict biomass. Here, Random Forest (RF) is used for the initial estimation of canopy
height, then empirical allometric equations are used to estimate biomass. More simply,
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Baccini et al. [45] use pure RF to do their prediction. Other examples of machine learn-
ing methodology used include the Saatchi et al. [42] map. This uses a Bayesian machine
learning method known as a maximum entropy model to produce estimates.

Linear models (LMs) and generalised linear models (GLMs) by their nature do not
account for nonlinear effects of predictors which may be apparent in an ecological setting,
such as AGB estimation. Additionally, both LMs, GLMs and machine learning methods
used in global maps do not account for any spatial correlation other than that induced
by predictors.

To summarise, the two main strands of methods applied in the field of AGB estimation
are statistical and machine learning methods. Statistical methods include LM, GLMs and
hierarchical models. Machine learning methods include for example random forests and
k nearest neighbours. The advantage of statistical models is that they readily provide
uncertainty estimates, whereas machine learning methods do not always. For example,
in random forests a loss function is minimized, unless the loss function is based on a
likelihood, uncertainty can only be be quantified through simulation.

4.2. What Problems Are Faced When Modelling AGB Data?

As stated in Cressie [49], basic modelling approaches often use the convenient assump-
tion of independence between sample points. However, this independence assumption
is violated for spatial data where dependence is present in all directions and weakens as
data points become more dispersed. Satellite data are strongly spatially and temporally
correlated; data values will often be very similar to neighbouring pixels and are also likely
be similar to previous observations of the same location. This means that models such as
LMs, GLMs or RF, where independence of data points is assumed, should not be used for
AGB estimation models. If such models are used where assumptions are broken this can
cause model miss-specification leading to biased estimates. Non spatial models have been
used commonly in all current AGB global models listed in Table 2. This is unlikely because
most standard modelling techniques and machine learning methods do not account for cor-
relation. The complexity of creating these types of models, or even a lack of understanding
that this may be necessary can lead to spatial models not being used.

False assumptions are also often made regarding the errors of AGB maps. For example,
Saatchi et al. [42] uses the assumption that all errors will be distributed identically, are
independent, and follow a normal distribution. The first assumption is unlikely for this
type of data as areas with low accessibility, low sampling, or species heterogeneity are
likely to have higher errors. Whilst spatial correlation causes non-independent errors.

Additionally, data used to create global AGB maps will be complex and large-scale.
The data will be highly multivariate as there can be many sources of remote sensing
data and there can be multiple predictor variables from just one source of satellite data.
Applying advanced modelling techniques to these large multi-variate data sets requires
high performance computing methods and is likely to benefit from future developments in
this field [17].

4.3. Methods to Model Spatial Data

Hierarchical models provide a suitable framework for modelling in the presence of
spatial dependence; see for example [50,51]. This modelling technique can improve spatial
maps by including spatial random effects and hierarchical levels to account for data at
different resolutions or scales. These methods typically use Gaussian random fields or
spatial smooths to capture spatial dependence within the data. A recent example of this is
the 1 km AGB map created with GEDI data using a generalised hierarchical model [52,53].

In terms of parameter estimation of these hierarchical models there are different possi-
bilities [50,51,54,55]. Hiercharchical models can be estimated using generalised additive
mixed models implemented in the mgcv package [51,56] using a frequentist or empirical
Bayes approach. A Bayesian approach to estimation is also possible using Markov chain
Monte Carlo (MCMC) see for example [57]. The integrated nested Laplace approximation
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(INLA) approach proposed by Rue et al. [58] is a computationally effective alternative to
MCMC. Combined with the stochastic partial differential equation approach (SPDE) [59],
one can accommodate all kinds of geographically referenced data, including areal and
geostatistical ones, as well as spatial point process data. The R package R-INLA imple-
ments these models [60,61]. R-INLA allows the implementation of spatial Generalised
Linear Models (GLMs) and spatial Generalised Linear Mixed Models (GLMMs) alongside
a further range of spatial models. These have already been shown to be effective in the
environmetrics field. Lindgren et al. [62] highlights various examples of this, including
air pollution models [63]. Machine learning methods have additionally been introduced
as a method which can improve estimates for AGB. These models have great potential to
find patterns in large quantities of data and have been commonly used over geostatistics.
However, as discussed by Heuvelink and Webster [64], machine learning methods do not
take into account spatial patterns for modelling which can lead to issues of overfitting and
underestimation of error. Spatial versions of machine learning methodology may offer a
solution to this and work is being conducted in this area [65,66].

5. Data Combination
5.1. Why Use Combinations of Data Sources?

It is difficult to accurately map AGB for all vegetation types and regions, to the spatial
and temporal resolution needed with a single remote sensor [17]. There are great benefits
to be gained from combining various remote sensing sources. Each data type has its own
advantages and drawbacks, and so combinations of different data sources can absolve them
of their weaknesses.

Various combinations of optical, SAR, and lidar data-sets are frequently used to
produce global and local scale maps. Additionally, as an alternative to remote sensing,
data sources such as digital elevation maps (DEMs), land use maps, climate variables
and vegetation type are also associated with AGB and can be incorporated into biomass
prediction models.

Otherwise, combination methods can also be applied to a single data source. There
can be many temporal repetitions of a single data source in a short space of time which can
be used to create better estimates. Combination methods can also be applied to various
maps to produce a map which encompasses information from several repetitions.

5.2. How Are Global Data Sources Currently Combined?

The various data sources used to create global maps are shown in Table 1. Multiple
data sources are often used to create AGB maps. Commonly, small quantities of field
data or airborne lidar data are used as ‘ground truth’ to understand relationships between
more widely available data and the AGB values they represent, which allows models to be
created. Duncanson et al. [41] produced maps in this way: parametric prediction models
are applied to spaceborne lidar height metrics. Meanwhile, airborne laser scanning and
field data are used as a ‘ground truth’ data-set to create the parametric models. Similarly,
Rodriguez-Veiga et al. [48] applies models to L-band SAR data, whilst using spaceborne
and airborne lidar data as ‘ground truth’ data-sets to build models.

Of more interest, is the ability to combine multiple remote sensing data sources, to
provide more information and more accurate AGB estimates. Complementary sources
being used in combination has been shown to improve prediction of AGB [67,68]. This is
because different data sources are sensitive to different information. For example, SAR
data sources are generally sensitive to the density of vegetation, whilst optical imagery is
sensitive to the type of vegetation or land cover. It is clear complementary data-sets can be
useful, however it is still unclear how they should be most effectively combined.

A number of global AGB maps have begun to combine complementary data sources.
The Santoro et al. [39] map and its following revisions have combined L-band and C-band
SAR as input variables [44]. The methodology used here is to create two models, and in
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turn predictions, for each type of SAR data. These predictions are weighted, based on their
sensitivity to biomass volume, and then combined [39].

Saatchi et al. [42] introduces a map which combines various data sources including:
optical indices, digital elevation data, and microwave remote sensing data. This map takes
all layers as entries to a maximum Entropy model which uses a sequential update machine
learning algorithm to update the weights given to each data source for estimation.

Avitabile et al. [47] introduced a global map which used two previously created global
AGB maps as input data sources [42,45]. This model used a weighted average of the two
models to produce a combined map. This map had improved error rates in comparison
to both input maps and shows the advantages of ensemble methods, combining various
modelling techniques as well as data sources.

Frequentist hierarchical modelling techniques have also begun to be used on global
scale data sets. A study using North American field data combined wall-to-wall remote
sensing imagery with sparser discontinuous lidar data by using a generalised hierarchical
model. This involved creating a model using the sparser more accurate data-set and
then using this model’s predictions to fit a further model with the spatially continuous
data-set [52].

5.3. Problems Faced When Combining Data

One difficulty faced when combining data-sets for prediction of AGB is spatial mis-
alignment. This is when different spatial layers are acquired at different spatial scales [57].
For example, GlobBiomass model combines data from C-band and L-band SAR which are
available at 150 m and 100 m resolutions, respectively. This can typically be dealt with using
some form of spatial interpolation to create wall-to-wall data-sets, of the same resolution,
through geostatistical methods or machine learning.

This problem is particularly apparent when using lidar and field data, both of which
generally have sparse sample points and spatially discontinuous coverage. This can be
seen in Figure 1a. However, since lidar and field sample points often produce highly
accurate information in these small areas, incorporating this information into maps can
improve estimates.

Satellite data are also prone to temporal misalignment, this is when the satellite
imagery is taken at a different time than its validation data. Since field data are is not
regularly measured in comparison to regularly occurring satellite data this is a commonly
occurring problem. This can cause issues for AGB estimation, particularly if significant
AGB change has occurred in the time period between satellite and validation data collec-
tion. For example, if deforestation or forest degradation has occurred between repeated
data collection.

5.4. Methods to Tackle Spatial Misalignment

Statistical methods can be useful to tackle these spatial misalignment problems.
Atkinson et al. [69] notes that statistical methods can be useful for downscaling from a
coarse pixel to a finer spatial resolution, and fusion of images of a certain spatial resolution
with other images of a different spatial resolution.

Kriging has been an especially effective methodology for tackling this problem and
has been well accepted into the geoscience community. However, there are alternative
statistical and machine learning methods which can improve results here. For example, a
method proposed by Poggio and Gimona [70] uses generalised additive models (GAMs) in
conjunction with kriging to downscale climate information. This method is more capable
of handling non- linear relationships and showed improvements in the reproduction of the
spatial pattern with a reduced bias in estimates, in comparison to standard Kriging methods.

Machine learning methods are also capable of effectively interpolating maps and
downscaling or upscaling remote sensing images. However, machine learning methods
often do not account for spatial correlation explicitly and so more spatially aware methods
are needed to make sure interpolations realistically represent spatial patterns [64].
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(a) (b)

(c)

Figure 1. Satellite imagery downloaded using Google Earth Engine over the same location in Black
Forest, Germany [centre point: 48.528N, 8.228E]. (a) Lidar, GEDI. Footprints of data are shown by
coloured dots ranging from pink (low height) to blue (large height). (b) SAR HV, ALOS PALSAR-
2 annual mosaic, shown with no filtering. No backscatter is black and high backscatter is white.
(c) Optical Imagery, Sentinel-2. Bands 2, 3 and 4 are shown to create a RGB image, with a 90% stretch
applied. (a) GEDI footprint data, lidar imagery; (b) ALOS-PALSAR-2 annual mosaic, SAR imagery;
(c) Sentinel-2 bands: RGB, optical imagery.

5.5. Models to Improve Data Combination

As discussed by Gelfand [54], in the spatial setting there is often the need to combine
spatially misaligned data sources. For AGB measurement this would usually consist of
sparse field or lidar measurements combined with widely available satellite imagery such
as optical or SAR.

Whilst generalised hierarchical models have been used to tackle this problem, none of
the global maps presented here used Bayesian methodology to implement them. Bayesian
hierarchical models provide a cohesive framework for combining complex data models and
external knowledge or expert opinion [55]. Bayesian models, treat the unknown parameters
as random variables, that is random effects, rather than fixed values. This modelling allows
spatial correlation to be induced. The customary requirements for independent data values
can also be relaxed, which prevents violations of model assumptions which can be common
in spatial modelling.

A study conducted by Babcock et al. [71], highlighted the potential for Bayesian
geostatistical methods in combining remote sensing data sources for AGB prediction.
However further work is needed to implement these effectively and on global scales.
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Ref. [72] introduces a prototype to estimate global daily air temperatures. This receives
large number of satellite observations to produce temperature estimates together with near-
surface air temperature measurements to create a more complete record of air temperature.
Bayesian spatio-temporal models such as these may be useful to improve data combination
methods used for AGB estimation. When combined with methods for fast computations
for hierarchical statistical models [73] these models can handle multiple scales as well as
non-stationarity [59,74].

6. Model Validation
6.1. How Are Global Maps Currently Assessed?

It is clear that in recent years that vast improvements have been made to model
assessment within the AGB estimation field. Lu [19], a previous review of AGB modelling
in 2006, notes that many AGB estimation studies failed to provide any accuracy assessments
due to the difficulty in collecting ground reference data. All global studies considered here
provided some form of model accuracy assessment.

Model validation techniques are important in both model selection and model assess-
ment. Researchers would like to use validation methods which can effectively select the
best models for AGB estimation and to assess the success of a final chosen model. For this
we measure the accuracy of the predictions that we obtain when we apply our method to
previously unseen test data [75]. Commonly used measures to quantify the prediction error
are the mean squared prediction error or often just called mean square error (MSE). This is
the difference between the true value and the prediction, squared and averaged over all
predictions. Often the MSE is expressed as root mean squared error (RMSE). Alternatively
the absolute error takes the absolute value of the difference. A low MSE indicates that
estimates of AGB are fairly good. Valbuena et al. [76] noted in 2017 the need for AGB maps
to include some form of error values when reporting maps.

MSE can be estimated by simply retaining a separate data-set with ’ground truth’
values and applying the model to this data-set, this is known as the validation set. The
MSE achieved for this validation set gives an indication of model performance. Cross
validation is an alternative method used to estimate MSE making full use of the data
available rather than using a validation data set. This method splits the data into random
partitions. Each partition is used as a validation set for a model produced using the other
remaining partitions. The resulting error rates are then averaged over all partitions [75,77].

For the global models investigated here RMSE was the most commonly used form of
model validation. This was used by maps produced by Santoro et al. [39], Simard et al. [43],
Santoro [44]. Cross validation is also used in AGB estimation studies including Saatchi et al. [42],
Ploton et al. [78], Roberts et al. [79]. Cross validation can be used to estimate various
statistics including RMSE or the coefficient of determination (R2) [78,80].

6.2. Problems with These Validation Methods?

In the early 2000s, Lu [19] discussed the lack of sufficient AGB data to provide model
validation. Since then there have been significant advances, and all maps shown in Table 2
provide some form. However, there are still areas to improve on within model assessment
of AGB estimates. Validation techniques discussed are not adequate within the context of
spatial and temporal modelling.

As previously discussed, AGB global maps are produced using models which are
based on smaller amounts of training data, available only in certain locations. When
models are applied to this data it is possible for overfitting to occur. Overfitting is when
the statistical learning model follows patterns in the training data too closely, and may
be picking up some patterns that are just caused by random chance rather than by true
relationships between satellite data and AGB [75,77]. When a given method yields a small
training error but a large test error, it is said to be overfitting the data. This has been shown
to be a problem for global AGB maps [78]. Model transferability is an important point of
AGB estimation [19]. A model is considered transferable if it is created and then can be



Remote Sens. 2022, 14, 4911 12 of 23

successfully applied to unseen spatial locations. To allow this transferability it is important
to prevent overfitting. To prevent such overfitting good validation techniques are needed.
Effective validation techniques can identify when overfitting is occurring.

Ploton et al. [78] show in a large scale study of African forests, that the non-spatial
validation methods which are widely used within AGB mapping vastly under-estimate
prediction error. The study showed that for a RF model non-spatial cross validation
suggested the model predicts over half of the forest biomass variation, whilst a spatial
version of cross validation suggested almost zero predictive power [78].

General techniques which do not account for structural dependencies, such as spatial
dependence, are more prone to overfitting and underestimating prediction errors. One
cause for the poor performance of general cross-validation are dependence structures in
the data that persist as dependence structures in model residuals, violating the assumption
of independence made in general cross-validation [79]. This spatial dependence, where
neighbouring measurements show similar values, is fairly common in AGB mapping. It is
especially important to make our validation take into account the structure of our data if
the model has not done so, for example in machine learning techniques: random forest and
neural networks. This is because these methods do not account for spatial correlation and
are hence more prone to overfitting.

Duncanson et al. [81] also states the importance of a global consensus on AGB map
validation. Whilst Araza et al. [82] notes the need for a global reference dataset for consistent
global accuracy and uncertainty assessments. This will be important going forward as
maps are used in collaboration and to direct global policy. In addition to the way the
cross-validation is performed, by for example ignoring spatial correlation in the response,
there are also problems with only focussing on the prediction error. Statistics like the mean
squared error and R2, estimated by cross-validation, only quantify the prediction error
relative to the mean of the the predictive distribution and hence ignore the uncertainty
of the prediction. Gelman et al. [80] therefore recommends to also consider the log score
and the log likelihood. In particular, the log score is also useful for different non-normal
distributions (e.g., in logistic regression) and when the focus is on the accuracy of the whole
predictive distribution rather than just point estimates.

6.3. Alternative Validation Methods

Various implementations of more spatially aware validation methods are available.
A further variation on cross validation is block cross validation, where the data-set is
separated into blocks which are similar. This forces the model to test on data which is
distant and hence independent to the training data used [79]. Spatial forms of block cross
validation include Leave-Location-Out (LLO) cross validation which trains the model on
all locations but one (or a group of locations) and then tests the model on this alternative
location. A further example of this is the R package ‘sperrorest’ which allows user defined
spatial sampling when applying cross validation or bootstrap methods [65].

Spatial forms of cross validation have been used in the more recent global maps such
as: Rodriguez-Veiga and Balzter [40], Duncanson et al. [41]. Since this method is more
effective than general cross-validation and RMSE it should be more widely used across
global maps.

Alternatively, Wadoux et al. [83] suggests that a more effective way to validate global
maps is to use probability sampling and design-based inference, producing unbiased
estimates of map accuracy. An example of this is using random sampling to select points
for which to assess the accuracy of.

In the AGB estimation case, models are trained and validated using very sparse
validation data. This means it is likely that models will estimate AGB in completely
unseen locations. For this reason it is especially important that models are not overfitting
and that models are highly transferable. Forms of validation which can improve this
are very useful in this situation. However, Meyer and Pebesma [84] notes that, when
sparse validation points are available, maps are often extrapolating beyond the geographic
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locations of training data. For example, when data are strongly concentrated in areas of
intense research. This often can occur with AGB field data and can cause predicted values
to be meaningless and validation estimates to be inaccurate.

Meyer and Pebesma [84] also suggests the using an ‘area of applicability’, a way of
assessing for which areas training data is similar enough to data used for wider estimation
for the models used to be valid. Validation in this area also ensures validation yields
accurate results.

7. Uncertainty Measurements
7.1. The Importance of Uncertainty Measurements

AGB predictions are susceptible to uncertainty at almost every level of the modelling
process. Uncertainty can be introduced from location and tree measurement error, sampling
error, plot to map temporal mismatch, and errors from allometric models [82]. These
uncertainties can be quite often ignored entirely.

However, it is important for the utilization of AGB predictions that such sources
of error are propagated and final uncertainty estimates are provided with AGB maps.
Additionally, objective and consistent methods to estimate the accuracy and uncertainty of
AGB maps across different research communities and global maps are needed [82].

In order to monitor progress in achieving emissions reductions uncertainty measure-
ments are needed at an accurate enough scale to verify mitigation actions which have been
implemented [85]. Without these uncertainties it is difficult to verify if mitigation has been
successful; this hinders progress in preventing forest carbon emissions.

Similarly, it is also necessary to understand uncertainties in estimation to detect
changes in biomass. When estimating biomass for two distinct time points, without
uncertainties it is difficult to know if different biomass estimates indicate a real change or
are simply expected due to differences in input data. Furthermore direct measurement of
the uncertainty of change is also useful for policy decision making.

Uncertainty can be provided on various scales depending on the uses of the AGB
maps produced. Uncertainty can be provided for example by: a per pixel basis, over a
large region, or for changes which have occurred. These uncertainties may be completely
different since it is likely that aggregated predictions over a region, e.g., mean AGB of
a region, are more certain than estimates of locations, i.e., on a pixel by pixel basis. If
policies are made based on these maps it is important to understand for which scale these
uncertainties are needed. For monitoring, typically maps are required to check for changes
and areas of interest, hence the uncertainty by location is of importance.

7.2. How Is Uncertainty of Global Maps Currently Presented?

There are multiple uncertainty metrics for biomass estimates, which include the
relative and absolute systematic deviation and confidence interval or RMSE for the overall
biomass estimate [12].

The majority of AGB maps currently do not provide uncertainty maps, or do not
provide detailed uncertainty assessments. However, uncertainty maps are provided by
JPL benchmark map, and GEDI gridded AGB map [42,53]. Uncertainty is also provided at
national scale for Baccini et al. [45] tropical map.

In the current literature uncertainty estimates are often not properly propagated via a
(Bayesian) hierarchical model and instead are simply added up, assuming that different
error components are independent of each other. This will be incorrect in many instances.
For example, uncertainty maps produced for Saatchi et al. [42] AGB map are produced by
totalling different sources of error. This map combines error produced from: measurement,
allometric models, sampling, and prediction. These uncertainties are given on pixel,
national and regional scales.

Uncertainty for Baccini et al. [45] is produced by totalling estimates of error from
both allometric models and the random forest model used for prediction. This gives an
uncertainty value on a national level.
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For uncertainty estimates of GEDI hybrid estimator, a variance estimator is used which
includes terms for sampling error and uncertainty of parameter estimates [52,53].

7.3. Problems Faced When Providing Uncertainty Estimates

AGB maps are susceptible to uncertainties from many sources. It has also been ob-
served that many contributing errors are often ignored when AGB uncertainty is calculated.
Saarela et al. [86] concluded that the common practice of ignoring error occurring in the
field-to-lidar step can lead to underestimation of variance. Methods which allow for many
sources of error are needed for AGM map uncertainty estimates.

Methods, such as hierarchical models, capable of propagating uncertainty from multi-
ple input data sources and realistic modeling of uncertainty due to spatial variability have
seen only very limited use in the Earth sciences [72].

When mean AGB is estimated or predicted (at a location/pixel) using model based
methods, these estimates come with variances estimates and these would feed into confi-
dence or prediction intervals. In the case of machine learning methods which are generally
algorithmic, variance estimates are typically not available unless some form of resampling
or simulation is used. Prediction error or mean squared error is the expected squared
deviation of a random variable from its estimate. It estimates how far away a prediction at
an unseen location would be from the actual value. It can be decomposed into contributions
from the bias (systematic error) and variance (random error) and can be estimated for both
model based and machine learning methods and hence can be used to compare predictive
performance via some form of validation for both methods. Both variance and prediction
error (RMSE) are relevant. Variance estimates are model dependent and can be estimated
from the model or by simulation (see [87] for an example using geostatistics).

Meanwhile, a further problem faced in uncertainty estimates is spatial mismatch. This
is inherent in modeling AGB on a large scale based on smaller-footprint measurements and
makes uncertainty estimates difficult [53].

Further causes of incorrect uncertainty estimates may be attributed to statistical as-
sumptions being broken. For example, Patterson et al. [53] assumes that over 1 km mean
residual errors will tend to zero. However, in areas of high spatial correlation this is unlikely
to be true.

A lack of appropriate uncertainty estimates can lead to incorrect interpretations of
maps and their meaning. Furthermore, the communication of uncertainty is difficult.
Unclear communication of uncertainty can lead to over reliance on the produced maps.
When uncertainty measures are provided with AGB maps, they are generally provided as
an additional uncertainty map. It can be difficult to interpret these two maps together and
to visualize the amount of uncertainty.

7.4. Alternative Uncertainty Measurement Methods

Statistical methods provide a comprehensive framework for uncertainty propagation
when modelling which can handle error from multiple data sources. One method to
propagate error from multiple sources is to use hierarchical modelling. Other modelling
techniques, such as many machine learning methods, may not have methods for direct
uncertainty estimates to be produced.

The hierarchical models described in Section 4.3 have been more commonly used
within the AGB estimation field [52,53]. They have considerable advantages in comparison
to simple regression models. One of these advantage is the ability to propagate uncer-
tainty. By recognizing the uncertainty in the model unknowns, uncertainty is properly
propagated to inference arising from the model [54]. This allows for better uncertainty
interpretation [55,57].

Bayesian inference methods can also be used to improve propagation of uncertainty.
This Bayesian method allows us to represent uncertainty in the process by drawing samples
from the posterior distributions of the model components. These methods will allow
uncertainty to be incorporated from many data source into a final uncertainty estimate.
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Rayner et al. [72] shows an example of using these advanced statistical methods to
combine satellite data and field observations of air temperature. This has allowed for
effective global air temperature estimates alongside their uncertainties. Further examples
of using Bayesian methods to estimate air pollution levels using satellite data and other
data sources are also available [63,71,88,89].

Simulation methods, such as the sequential Gaussian cosimulation (SGCS), can also
be used to provide uncertainty quantification, these methods have been applied to various
remote sensing applications [17,87]. There are a range of examples which have used
simulation methods to model spatial uncertainty of vegetation cover using remote sensing
data. One method which can be used is sequential indicator simulation (SIS) which
allows multiple maps to be produced that honour the available data [90]. For example,
De Bruin [90] uses SIS to generate a set of equally probable maps, which can then be used
to estimate uncertainty.

Whilst many machine learning algorithms do not directly provide uncertainty esti-
mates there is growing demand for algorithms to do so. An example of this is Quantile Re-
gression forests which build upon random forest methodology. They give a non-parametric
and accurate way of estimating conditional quantiles for high-dimensional predictor vari-
ables [91]. These have been used to provide effective uncertainty estimates in the soil
sciences [64,92].

Additionally, various statistical methods can be applied to uncertainty visualization.
The R package Vizumap [93] offers a good suite of methods for this, including bivariate
choropleth maps, pixel map, glyph maps, and exceedance probability maps. From these
the pixel map is a good method to show uncertainty of AGB estimates, areas of greater
uncertainty appear pixelated while areas of less uncertainty appear smooth, as though filled
by only a single colour. A similar method has been introduced to tackle this problem by
Taylor et al. [94]. A further method to visualize uncertainty is to use contour maps. Contour
maps have been widely used in environmental sciences however they are rarely used to
explain uncertainty. These maps use many contours when uncertainty of the estimated
surface is low and fewer contours if uncertainty is high [95].

8. Change Detection and Quantification
8.1. The Importance of Change Detection

Commonly global AGB maps are produced as one time products, when repeat maps
are produced they are often produced with temporal gaps of over five years. Whilst there
is value in and need for high-quality AGB stocks data, many applications require biomass
change information [12]. For AGB maps to be useful as an ECV, it is needed for them to
be provided annually or at least every 5 years to capture the most important changes [12].
Since there is an increasing availability of suitable satellites with recurring imagery, this is
likely to be an important goal of future research. Quantification of global forest change has
been lacking. Spatially and temporally detailed information on a global-scale does not yet
exist [4].

8.2. How Is Global Biomass Change Currently Detected?

There are two main strategies behind biomass change detection. The first is to produce
multiple ‘one-time’ AGB maps over a set period from remote sensing data-sets. From these
maps, biomass change can be detected by calculating the differences between maps.

The second strategy is to directly detect deforestation from remote sensing data. This is
done by detecting departures from normal that may indicate deforestation or degradation.
This detection may be done by classifying forested and deforested areas, or it may quantify
the degradation that has occurred. Though both are useful metrics, for carbon emissions a
quantified AGB change map can allow carbon losses to be calculated.

The number of global or continental biomass change maps is extremely low, as this is a
very current area of research. However, strong efforts have been made towards producing
biomass change maps on a global scale [4,44,46].
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The Santoro [44] global AGB change map builds on the single time point AGB maps
which have been produced for 2010, 2017 and 2018 [44]. The differences between these
maps have been taken to provide a full global coverage of biomass change. However, as
both these original maps have high uncertainty levels of around 40–60% of the estimated
value, these change maps also have considerable uncertainty [44].

In the tropical regions Baccini et al. [46] has produced Above-Ground Carbon (AGC)
change maps. Similarly, change is detected using annual single time point AGC maps and
finding differences between these maps. Single maps were produced from MODIS annual
mosaics for each year between 2003 and 2014 [45]. For each pixel a 12-year time series
was created. Time series change point analysis was then use to detect significant changes
on a pixel level. This produced an estimated difference alongside standard error which
indicated the uncertainty of change.

8.3. Problems Faced When Detecting AGB Change

One of the main problems faced in detecting AGB change is that there still exist high
uncertainties in maps produced for single time points. A shown by Santoro [44], these large
uncertainties make it difficult to be certain of changes and the quantities of change. To
produce effective maps of change it is first necessary to decrease uncertainty of individual
maps. Future developments producing a larger number of global scale maps using various
sources of data should make conclusions more certain.

Alternatively, for strategies which directly detect change in biomass using change
detection methods, problems may be caused by a lack of validation data. Collecting reliable
temporal field-based data-sets is difficult [96]. Validation of AGB change requires data-sets
which clearly indicate areas which have experienced changes and those that have remained
stable. Without these regular data-sets such methodology is difficult. Hansen et al. [97]
introduced the idea of comparing each time series of data (of a pixel) with the mean
reference time series of the data. This involves transforming the the time series of each
pixel into measures of dissimilarity to the mean time series. The method hence enables
change detection without reliable reference data and results are promising.

Remote sensing data are also susceptible to detecting changes in factors entirely
unrelated to changes in biomass. Atmospheric conditions, seasonal changes, and sun
angle all naturally contribute towards differences in remote sensing data [96]. The ability
to separate these factors from real change in biomass levels is a problem which requires
consideration when producing change maps.

8.4. How Can Change Detection Be Improved?

Due to cloud cover or satellite availability it is difficult to find repeat imagery while
maintaining weather and seasonal conditions [98], which makes it more difficult to detect
real change. To minimise the effect of seasonality and other confounders it is important to
use methods which acknowledge these effects. This can be done using general time-series
methodology. Hostert et al. [98] notes that phenology driven change detection can greatly
benefit from the use of time series methods.

In the literature studied here there are no examples of this for global AGB change
detection. However, time series analysis in other fields often use models which incorporate
seasonality and there are some examples of time-series methods applied to deforestation
detection. Zhao et al. [99] uses a Bayesian ensemble algorithm to detect change points,
trend, and seasonality within satellite data. Similar methodology to this has been used
to detect forest change on small scales using optical imagery [100,101]. To create accurate
global AGB detection time series methodology could be applied on a larger scale and
applied to some form of AGB measure which depends on multiple data sources.

Reiche et al. [102] has also implemented a proof of concept for deforestation detection
based on both SAR and optical imagery. This used a Bayesian multi-source time series
algorithm. This type of algorithm could be useful when applied on a global scale to AGB
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change detection, as AGB predictions are often improved when a combination of data
sources are used.

Bayesian space-time models have also been used which can be adjusted for seasonality
and confounders. Bayesian spatio-temporal models have been used to detect changes in air
pollution during COVID-19, using these models to adjust for seasonality and contextual
factors [60,62,63,103].

9. Discussion of Future Research and Potential Solutions

There is a wealth of remote sensing data sources available which are sensitive to
AGB, indicated in Table 1. This availability of data means there are many opportunities to
produce effective maps. Future data sources, such as the upcoming BIOMASS satellite [32],
should also improve the accuracy of AGB estimations.

Above-ground biomass (AGB) maps are valuable data sources which can indicate
the volume of carbon held in forests. This is especially useful in making policymakers
aware of forest areas which need support or protection, and of changes occurring in forest
carbon levels [3,7,17]. Research is needed to ensure that these data are used as effectively
as possible and to ensure maps are reliable enough to be used within policy. Statistical
methods may offer solutions to many problems faced in producing effective AGB maps.

This study focused on assessing global or continental maps shown in Table 2. Various
topics of research stood out as areas which could be positively impacted by statistical
knowledge and that would increase the practicality of AGB maps. These topics were:
(i) spatial modelling, (ii) data combination, (iii) model and map validation, (iv) uncertainty
estimation, and (v) change detection and quantification.

Almost all global models investigated did not account for spatial dependence within
their models. Only one example using hierarchical modelling for AGB prediction was
found [52]. This is an area which could benefit from the knowledge of spatial statis-
ticians. Various models are available which incorporate a spatial element and do not
assume independence of spatial data. These include forms of hierarchical modelling,
spatial GLMs and spatial GLMMs which can be used in either a frequentist or Bayesian
setting [51,54–56,60–62]. Models which incorporate a spatial element may be able to more
effectively predict AGB using large spatial data sets obtained from satellites.

This study found that to validate their AGB prediction models the majority of global
maps used an RMSE value, some using general cross validation to estimate this, and
one example of spatial cross validation [41]. Numerous studies have shown that general
cross-validation will likely over estimate predictive performance in the presence of spa-
tial auto-correlation, since spatial overfitting may occur [66,78,84]. Considerable work
has been done is this area and suggests that using spatial forms of cross-validation or
probabilistic sampling may be good options to prevent this overestimation of predictive
performance [79,83,84]. However, there is no consensus as to the best method to be used.
Further, research is needed to understand which validation methods are most effective for
AGB global maps. Furthermore, the encouraged use of these spatial validation techniques
is needed.

This study found that a major area for which statistical methods can benefit the creation
of AGB maps is uncertainty estimation and visualization. Hierarchical modelling has
begun to be used which can provide an improvement on current methods for uncertainty
estimation. Additionally using a Bayesian framework for inference could also improve
uncertainty estimates [58,60–62]. Newly developed machine learning methods are also
available which can propagate uncertainty estimates [91,92]. Map interpretation could
also be improved by using statistical methods to create contour maps or pixelated maps to
visualize uncertainty [93–95].

In addition, it was found that there is a severe lack of AGB change maps [4,44,46].
Those considered here also suggested high uncertainty detecting and quantifying change.
This is to be expected given that one time maps with much better validation data have
high uncertainty levels. However, change detection and quantification is very useful in
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understanding changes in carbon levels and in policy making regarding carbon levels [17].
To improve the quality of AGB change maps there are many opportunities. One method
would be to focus on decreasing uncertainty levels, as previously described, for one-time
maps, which would in turn improve change estimates. However the real gains are likely to
be made through the use of time series methodology, which may also be able to improve
change estimates by detecting real change and ignoring effect such as seasonality [98]. Only
a small amount of experimental work has been done using time series, and could present
an option for future researchers [97–102]. Another avenue for researchers is direct change
detection. This work has historically been difficult as there is only small amounts of change
validation data available, however solutions to this can be found [97].

10. Summary

In summary, there are many areas for which advanced statistical techniques can be
of great use to the geoscience community, in particular for above-ground biomass (AGB)
mapping. There is an influx of global satellite data available, and a growing need for
accurate large-scale mapping to inform climate policy makers. A greater collaboration
between research in the fields of: geoscience, statistics, computer science and forestry could
make vast improvements on the currently available global maps. This review should help
to point remote sensing researchers to statistical and machine learning techniques which
may lead to improvements in AGB maps. Whilst also highlighting the main topics for
which statistical methods are likely to have a positive impact. Moreover, this may give
statistical researchers a real world data source which inspires future developments.
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Abbreviations
The following abbreviations are used in this manuscript:

AGB Above ground biomass
AGC Above-Ground Carbon
ALOS Advanced Land Observing Satellite
CCI ESA Climate Change Initiative
CSA Canadian Space Agency
DBH Diameter at Breast Height
DEM Digital Elevation Map
DLR German Aerospace Center
ECV Essential climate variable
ESA European Space Agency
GAMs Generalised Additive Models
GEDI Global Ecosystem Dynamics Investigation
GLAS Geoscience Laser Altimeter System
GLM generalised linear model
GLMMs Generalised Linear Mixed Models
HV Horizontal vertical
INLA Integrated nested Laplace approximation
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JAXA Japan Aerospace Exploration Agency
Lidar Light Detection and Ranging
LLO Leave Location Out
MAAP Multi-Mission ALgorithm and Analysis Platform
MCMC MArkov Chain Monte Carlo
MODIS Moderate Resolution Imaging Spectroradiometer
MSE Mean Squared Error
NASA National Aeronautics and Space Administration
NCEO National Centre for Earth Observation
NFIs National Forest Inventories
OLS Ordinary Least Squares
PALSAR-2 Phased Array L-band Synthetic Aperture Radar
REDD Reducing Emissions from Deforestation and Forest Degradation
RF Random Forest
RMSE Root Mean Squared Error
SAR Synthetic Aperture Radar
SDGs Sustainable Development Goals
SGCS Sequential Gaussian Cosimulation
SIS Sequential indicator simulation
SPDE Stochastic Partial Differential Equations
UAV Unmanned Aerial Vehicle
UN United Nations
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