Geospatial Technology-Based Analysis of Air Quality in India during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.1.1. Sentinel-5P Data
2.1.2. Station Data
2.1.3. CFSR
2.2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bherwani, H.; Gupta, A.; Anjum, S.; Anshul, A.; Kumar, R. Exploring dependence of COVID-19 on environmental factors and spread prediction in India. NPJ Clim. Atmos. Sci. 2020, 3, 38. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Wang, J.; Tang, K.; Feng, K.; Lv, W. High temperature and high humidity reduce the transmission of COVID-19. Available at SSRN 2020, 355176, 2020b. [Google Scholar] [CrossRef]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Perlman, S. Another Decade, Another Coronavirus. N. Engl. J. Med. 2020, 382, 760–762. [Google Scholar] [CrossRef]
- Jarvis, C.I.; Van Zandvoort, K.; Gimma, A.; Prem, K.; Klepac, P.; Rubin, G.J.; Edmunds, W.J. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020, 18, 124. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Supe, H.; Jie, D.; Sahu, N.; Mishra, B.K.; Yunus, A.P. Did the COVID-19 Lockdown-Induced Hydrological Residence Time Intensify the Primary Productivity in Lakes? Observational Results Based on Satellite Remote Sensing. Water 2020, 12, 2573. [Google Scholar] [CrossRef]
- Gupta, S.; Raghuwanshi, G.S.; Chanda, A. Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020. Sci. Total Environ. 2020, 728, 138860. [Google Scholar] [CrossRef]
- Rosario, D.K.A.; Mutz, Y.S.; Bernardes, P.C.; Conte-Junior, C.A. Relationship between COVID-19 and weather: Case study in a tropical country. Int. J. Hyg. Environ. Health 2020, 229, 113587. [Google Scholar] [CrossRef]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef]
- Aruga, K.; Islam, M.; Jannat, A. Effects of COVID-19 on Indian Energy Consumption. Sustainability 2020, 12, 5616. [Google Scholar] [CrossRef]
- Kanitkar, T. The COVID-19 lockdown in India: Impacts on the economy and the power sector. Glob. Transit. 2020, 2, 150–156. [Google Scholar] [CrossRef]
- Akritidis, D.; Zanis, P.; Georgoulias, A.K.; Papakosta, E.; Tzoumaka, P.; Kelessis, A. Implications of COVID-19 Restriction Measures in Urban Air Quality of Thessaloniki, Greece: A Machine Learning Approach. Atmosphere 2021, 12, 1500. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2020, 755, 142533. [Google Scholar] [CrossRef]
- Keller, C.A.; Evans, M.J.; Knowland, K.E.; Hasenkopf, C.A.; Modekurty, S.; Lucchesi, R.A.; Oda, T.; Franca, B.B.; Mandarino, F.C.; Suárez, M.V.D.; et al. Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone. Atmos. Chem. Phys. 2021, 21, 3555–3592. [Google Scholar] [CrossRef]
- Petetin, H.; Bowdalo, D.; Soret, A.; Guevara, M.; Jorba, O.; Serradell, K.; García-Pando, C.P. Meteorology-normalized impact of the COVID-19 lockdown upon NO2 pollution in Spain. Atmos. Chem. Phys. Discuss. 2020, 20, 11119–11141. [Google Scholar] [CrossRef]
- Grange, S.K.; Lee, J.D.; Drysdale, W.S.; Lewis, A.C.; Hueglin, C.; Emmenegger, L.; Carslaw, D.C. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmos. Chem. Phys. 2021, 21, 4169–4185. [Google Scholar] [CrossRef]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef]
- Lee, J.-T.; Son, J.-Y.; Cho, Y.-S. The adverse effects of fine particle air pollution on respiratory function in the elderly. Sci. Total Environ. 2007, 385, 28–36. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef]
- Martelletti, L.; Martelletti, P. Air Pollution and the Novel Covid-19 Disease: A Putative Disease Risk Factor. SN Compr. Clin. Med. 2020, 2, 383–387. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents 2020, 55, 105948. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef]
- Paital, B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci. Total Environ. 2020, 729, 139088. [Google Scholar] [CrossRef]
- Das, K.; Paital, B. The synergy between philosophy and science, need of the contemporary society. Int. J. Humanit. Soc. Sci. Res. 2020, 6, 45–51. [Google Scholar]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; De Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.-H.; Hsieh, Y.-K.; Wang, Y.-F.; Zhang, J.; Wan, S. Impact of the COVID-19 Event on Air Quality in Central China. Aerosol Air Qual. Res. 2020, 20, 915–929. [Google Scholar] [CrossRef]
- Chylek, P.; Wong, J. Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett. 1995, 22, 929–931. [Google Scholar] [CrossRef]
- Penner, J.E.; Dickinson, R.E.; O’Neill, C.A. Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science 1992, 256, 1432–1434. [Google Scholar] [CrossRef]
- Lighty, J.; Veranth, J.M.; Sarofim, A.F. Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef]
- Lal, M.; Cubasch, U.; Voss, R.; Waszkewitz, J. Effect of transient increase in greenhouse gases and sulphate aerosols on monsoon climate. Curr. Sci. 1995, 69, 752–763. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Goudarzi, G.; Daryanoosh, S.M.; Borgini, A.; Tittarelli, A.; De Marco, A. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. 2017, 24, 2781–2789. [Google Scholar] [CrossRef]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project: Technical Report. World Health Organization; WHO Regional Office for Europe: København, Denmark, 2013. [Google Scholar] [CrossRef]
- Gaur, A.; Tripathi, S.N.; Kanawade, V.P.; Tare, V.; Shukla, S.P. Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in Northern India. J. Atmos. Chem. 2014, 71, 283–301. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Van Geffen, J.H.G.M.; Boersma, K.F.; Van Roozendael, M.; Hendrick, F.; Mahieu, E.; De Smedt, I.; Sneep, M.; Veefkind, J.P. Improved spectral fitting of nitrogen dioxide from OMI in the 405–465 nm window. Atmos. Meas. Technol. 2015, 8, 1685–1699. [Google Scholar] [CrossRef]
- Van Geffen, J.H.G.M.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products, S5P-KNMI-L2-0005-RP, Issue 1.2.0. 2018. Available online: https://sentinel.esa.int/documents/247904/2476257/sentinel-5p-tropomi-atbd-no2-data-products (accessed on 20 August 2020).
- Platt, U.; Stutz, J. Introduction. In Differential Optical Absorption Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Eskes, H.; Van Geffen, J.; Boersma, F.; Eichmann, K.-U.; Apituley, A.; Pedergnana, M.; Sneep, M.; Veefkind, J.P.; Loyola, D. Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide. Document Number: S5P-KNMI-L2-0021-MA. 2019. Available online: https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide.pdf (accessed on 20 August 2020).
- Sneep, M. Sentinel 5 Precursor/TROPOMI KNMI and SRON Level 2 Input Output Data Definition. 2019. Available online: https://sentinel.esa.int/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition (accessed on 20 August 2020).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R.P. Effect of Lockdown on HCHO and Trace Gases over India during March 2020. Aerosol Air Qual. Res. 2021, 21, 200445. [Google Scholar] [CrossRef]
Lockdown Phase | Period | Duration (Days) | Major Areas of Restriction |
---|---|---|---|
Phase 1 | 24 March–14 April 2020 | 21 | All activities except essential services; leaving homes |
Phase 2 | 15 April–3 May 2020 | 19 | Air, rail and metro activities; all educational and related institutions (only online education allowed); hospitality services including hotels and restaurants; large public gatherings such as cinema halls, malls, gymnasiums, sports complexes, etc.; social, political and cultural gatherings in all places |
Phase 3 | 4 May–17 May 2020 | 14 | Same as phase 2 |
Phase 4 | 18 May–31May 2020 | 14 | Same as phase 2 |
Unlocking Phase | Period | Duration (days) | Major Areas of Reopening |
Phase 1 | 1 June–30 June 2020 | 30 | Economic activities with strict conditions; vehicular traffic under certain circumstances; relaxation in day-to-day activities, religious places and other establishments but with conditions |
Phase 2 | 1 July–31 July 2020 | 31 | In addition to the above, relaxations in night curfew; the opening of vehicular traffic with conditions; clearance for more than five people in a shop |
Phase 3 | 1 August–31 August 2020 | 31 | As above but with more relaxations |
Lockdown Phase | Period | Duration (Days) | Major Areas of Restriction |
---|---|---|---|
Phase 1 | 8 March–30 April 2021 | All educational and related institutions (only online education allowed); hospitality services including hotels and restaurants; large public gatherings such as cinema halls, malls, gymnasiums, sports complexes, etc.; social, political and cultural gatherings in all places. Night curfew from 9 PM to 5 AM. | |
Unlocking Phase | Period | Duration (days) | Major Areas of Reopening |
Phase 1 | May 5 onwards | Economic activities with conditions |
Air Quality Category | Air Quality Index | NO2 Cocentration (µg/m3) |
---|---|---|
Good | 0–50 | 0–40 |
Satisfactory | 51–100 | 41–80 |
Moderately Polluted | 101–200 | 81–180 |
Poor | 201–300 | 181–280 |
Very Poor | 301–400 | 281–400 |
Severe | 401–500 | 400+ |
Place | Month | 2019 (mol/km2) | 2020 (mol/km2) | 2021 (mol/km2) | Reduction in NO2 Concentration (%) in 2020 vs. 2019 | Increase in NO2 Concentration (%) in 2021 vs. 2020 |
---|---|---|---|---|---|---|
Amritsar | March | 85.63 | 74.44 | 82.31 | 13 | 11 |
April | 98.83 | 78.04 | 92.13 | 21 | 18 | |
May | 121.18 | 112.11 | 118.91 | 7 | 6 | |
June | 129.81 | 103.71 | 123.71 | 20 | 19 | |
July | 102.16 | 90.37 | 118 | 12 | 31 | |
Patiala | March | 80 | 75.15 | 80.45 | 6 | 7 |
April | 95.78 | 79.03 | 100.69 | 17 | 27 | |
May | 124.11 | 106.46 | 120.39 | 14 | 13 | |
June | 125.54 | 105.86 | 117.04 | 16 | 11 | |
July | 105.11 | 91.77 | 106.25 | 13 | 16 | |
Jalandhar | March | 82.87 | 73.53 | 78.49 | 11 | 7 |
April | 96.39 | 80.36 | 97.26 | 17 | 21 | |
May | 116.2 | 106.67 | 113.71 | 8 | 7 | |
June | 124.78 | 104.58 | 113.03 | 16 | 8 | |
July | 105.51 | 90.83 | 115.67 | 14 | 27 | |
Khanna | March | 84.52 | 74.86 | 82.03 | 11 | 10 |
April | 93.68 | 76.23 | 97.92 | 19 | 28 | |
May | 121.63 | 108.19 | 119.72 | 11 | 11 | |
June | 125.57 | 109.62 | 115.61 | 13 | 5 | |
July | 109.72 | 95.2 | 114.49 | 13 | 20 | |
Delhi | March | 137.6 | 143.23 | 148.48 | 4 | 4 |
April | 162.19 | 91.25 | 142.75 | 44 | 56 | |
May | 153.97 | 116.11 | 130.93 | 25 | 13 | |
June | 160.19 | 127.4 | 146.43 | 20 | 15 | |
July | 146.79 | 122.18 | 146.07 | 17 | 20 | |
Gurugram | March | 97.82 | 89.03 | 98.27 | 9 | 10 |
April | 111.86 | 84.7 | 111.37 | 24 | 31 | |
May | 118.16 | 95.42 | 108.09 | 19 | 13 | |
June | 116.74 | 100.38 | 116.23 | 14 | 16 | |
July | 107.6 | 96.82 | 110.41 | 10 | 14 | |
Ghaziabad | March | 104.75 | 98.03 | 112.52 | 6 | 15 |
April | 125.39 | 89.39 | 118.95 | 29 | 33 | |
May | 128.96 | 107.8 | 115.6 | 16 | 7 | |
June | 125.19 | 99.78 | 117 | 20 | 17 | |
July | 112.63 | 94.75 | 115.39 | 16 | 22 | |
Noida | March | 213.73 | 158 | 207.7 | 26 | 31 |
April | 199.87 | 99.69 | 172.6 | 50 | 73 | |
May | 198.08 | 127.61 | 136.6 | 36 | 7 | |
June | 180.97 | 128.54 | 164.56 | 29 | 28 | |
July | 162.07 | 135.09 | 165.88 | 17 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taloor, A.K.; Singh, A.K.; Kumar, P.; Kumar, A.; Tripathi, J.N.; Kumari, M.; Kotlia, B.S.; Kothyari, G.C.; Tiwari, S.P.; Johnson, B.A. Geospatial Technology-Based Analysis of Air Quality in India during the COVID-19 Pandemic. Remote Sens. 2022, 14, 4650. https://doi.org/10.3390/rs14184650
Taloor AK, Singh AK, Kumar P, Kumar A, Tripathi JN, Kumari M, Kotlia BS, Kothyari GC, Tiwari SP, Johnson BA. Geospatial Technology-Based Analysis of Air Quality in India during the COVID-19 Pandemic. Remote Sensing. 2022; 14(18):4650. https://doi.org/10.3390/rs14184650
Chicago/Turabian StyleTaloor, Ajay Kumar, Anil Kumar Singh, Pankaj Kumar, Amit Kumar, Jayant Nath Tripathi, Maya Kumari, Bahadur Singh Kotlia, Girish Ch Kothyari, Surya Prakash Tiwari, and Brian Alan Johnson. 2022. "Geospatial Technology-Based Analysis of Air Quality in India during the COVID-19 Pandemic" Remote Sensing 14, no. 18: 4650. https://doi.org/10.3390/rs14184650
APA StyleTaloor, A. K., Singh, A. K., Kumar, P., Kumar, A., Tripathi, J. N., Kumari, M., Kotlia, B. S., Kothyari, G. C., Tiwari, S. P., & Johnson, B. A. (2022). Geospatial Technology-Based Analysis of Air Quality in India during the COVID-19 Pandemic. Remote Sensing, 14(18), 4650. https://doi.org/10.3390/rs14184650