Capability of a Ground-Based Passive Surveillance System to Detect and Track Spaceborne SAR in LEO Orbits
Abstract
:1. Introduction
2. Multilateration Method Used to Determine the Position of the Satellite with the SAR Emitter
3. Probability of Intercept (POI) of SAR Emitter by ESM MLAT System
4. MLAT System Positioning Error Analysis
4.1. General Description of MLAT Positioning Error
4.2. Effect of MLAT System Configuration on the SAR Emitter Positioning Error
4.3. SAR Emitter Positioning Error Analysis
- -
- simultaneous irradiation SAR emitter antenna pattern of all four MLAT receiving sites (see Figure 4),
- -
- TOA measurement error at the receiving sites was 10 ns (which corresponds to the current MLAT system requirements for a time measurement error in the region of 9–12 ns [16]),
- -
- -
- SAR emitter position error was expressed by the error ellipsoid of one SAR emitter position (see Figure 7).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kennewell, J.A.; Vo, B. An overview of space situational awareness. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1029–1036. [Google Scholar]
- Ionescu, L.; Rusu-Casandra, A.; Bira, C.; Tatomirescu, A.; Tramandan, I.; Scagnoli, R.; Istriteanu, D.; Popa, A.-E. Development of the Romanian Radar Sensor for Space Surveillance and Tracking Activities. Sensors 2022, 22, 3546. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, B.; Rutten, M.; Young, R.; Tingay, S.; Summers, A.; Gustainis, D.; Crosse, B.; Sokolowski, M. Establishing the Capabilities of the Murchison Widefield Array as a Passive Radar for the Surveillance of Space. Remote Sens. 2022, 14, 2571. [Google Scholar] [CrossRef]
- Liu, M.; Wang, H.; Yi, H.; Xue, Y.; Wen, D.; Wang, F.; Shen, Y.; Pan, Y. Space Debris Detection and Positioning Technology Based on Multiple Star Trackers. Appl. Sci. 2022, 12, 3593. [Google Scholar] [CrossRef]
- Losacco, M.; Schirru, L. Orbit Determination of Resident Space Objects Using the P-Band Mono-Beam Receiver of the Sardinia Radio Telescope. Appl. Sci. 2019, 9, 4092. [Google Scholar] [CrossRef]
- Novák, D.; Gregor, L. Detection and Tracking of SAR Satellites by Multilateration Passive Surveillance System: 7th ESA Workshop on RF and Microwave Systems, Instruments & Sub-Systems + 5th Ka-Band Workshop. 2022. Available online: https://atpi.eventsair.com/QuickEventWebsitePortal/arsi-keo/website (accessed on 25 May 2022).
- Reggiannini, M.; Bedini, L. Multi-Sensor Satellite Data Processing for Marine Traffic Understanding. Electronics 2019, 8, 152. [Google Scholar] [CrossRef]
- Cho, T.; Lee, C.; Choi, S. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy. Sensors 2013, 13, 4122–4137. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Pang, M.; Shan, C.; Sun, C.; Kim, Y.; Zhou, B. A Novel Joint TDOA/FDOA Passive Localization Scheme Using Interval Intersection Algorithm. Information 2021, 12, 371. [Google Scholar] [CrossRef]
- Hubáček, P. The error estimation and ambiguity of solution of 2-D time difference of arrival localization method. In Proceedings of the 2012 13th International Radar Symposium, Warsaw, Poland, 23–25 May 2012; pp. 411–418. [Google Scholar] [CrossRef]
- Hubáček, P.; Veselý, J.; Olivová, J. Radar Position Estimation by Sequential Irradiation of ESM Receivers. Sensors 2021, 21, 4430. [Google Scholar] [CrossRef] [PubMed]
- The European Space Agancy. 2021. Available online: https://dragon3.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath (accessed on 15 February 2022).
- The European Space Agancy. 2021. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath (accessed on 17 February 2022).
- Sun, J.; Yu, W.; Deng, Y. The SAR Payload Design and Performance for the GF-3 Mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuptsov, V.; Badenko, V.; Ivanov, S.; Fedotov, A. Method for Remote Determination of Object Coordinates in Space Based on Exact Analytical Solution of Hyperbolic Equations. Sensors 2020, 20, 5472. [Google Scholar] [CrossRef] [PubMed]
- ERA a.s. Technical documentation—EG110A003041. The Czech Republic. 2011. Available online: https://www.era.aero/cs/o-nas/dokumentace/EG110A003041 (accessed on 10 January 2014).
- Veselý, J.; Hubáček, P.; Olivová, J. The Power Gain Difference Method Analysis. Sensors 2020, 20, 3018. [Google Scholar] [CrossRef] [PubMed]
Baselines | Short | Standard | Long |
---|---|---|---|
b1 [km] | 7483 | 17,898 | 35,917 |
b2 [km] | 8342 | 16,086 | 32,496 |
b3 [km] | 9203 | 18,575 | 37,310 |
Configuration | Size of Semi-Axis A | Size of Semi-Axis B | Size of Semi-Axis C | |||
---|---|---|---|---|---|---|
Short | 177,450.71 | m | 422.12 | m | 560.19 | m |
Standard | 38,564.87 | m | 187.30 | m | 285.54 | m |
Long | 9,492.74 | m | 92.48 | m | 142.72 | m |
Slope/Orientation of Semi-Axes of Error Ellipsoid | |||
---|---|---|---|
Configuration | Orientation of Semi-Axis A | Orientation of Semi-Axis B | Orientation of Semi-Axis C |
Short | 61.5° | −48.3° | −31.4° |
Standard | 65.1° | −50.4° | −31.4° |
Long | 61.5° | −48.3° | −31.4° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novák, D.; Gregor, L.; Veselý, J. Capability of a Ground-Based Passive Surveillance System to Detect and Track Spaceborne SAR in LEO Orbits. Remote Sens. 2022, 14, 4586. https://doi.org/10.3390/rs14184586
Novák D, Gregor L, Veselý J. Capability of a Ground-Based Passive Surveillance System to Detect and Track Spaceborne SAR in LEO Orbits. Remote Sensing. 2022; 14(18):4586. https://doi.org/10.3390/rs14184586
Chicago/Turabian StyleNovák, David, Ladislav Gregor, and Jiří Veselý. 2022. "Capability of a Ground-Based Passive Surveillance System to Detect and Track Spaceborne SAR in LEO Orbits" Remote Sensing 14, no. 18: 4586. https://doi.org/10.3390/rs14184586
APA StyleNovák, D., Gregor, L., & Veselý, J. (2022). Capability of a Ground-Based Passive Surveillance System to Detect and Track Spaceborne SAR in LEO Orbits. Remote Sensing, 14(18), 4586. https://doi.org/10.3390/rs14184586