A Numerical Analysis of the Changes in O3 Concentration in a Wildfire Plume
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Configuration and Input Data
2.2. Input Data of Wildfire Emissions
2.3. Vertical Distribution of Wildfire Emissions
2.4. Process Analysis
2.5. Statistical Parameters
3. Results and Discussion
3.1. Evaluation of Numerical Simulation Results
3.2. Differences in Numerical Simulation Results According to the Vertical Distribution Method of Wildfire Emissions
3.3. Changes in Pollutant Concentrations Due to Wildfire Emissions
3.4. Analysis of Changes in O3 Concentration in Wildfire Plume
3.5. Analysis of Contribution to O3 Production and Loss in Wildfire Plume by Chemical Equations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jena, C.; Ghude, S.D.; Pfister, G.; Chate, D.; Kumar, R.; Beig, G.; Surendran, D.E.; Fadnavis, S.; Lal, D. Influence of springtime biomass burning in South Asia on regional ozone (O3): A model based case study. Atmos. Environ. 2015, 100, 37–47. [Google Scholar] [CrossRef]
- Souri, A.H.; Choi, Y.; Jeon, W.; Kochanski, A.K.; Diao, L.; Mandel, J.; Bhave, P.V.; Pan, S. Quantifying the impact of biomass burning emissions on major inorganic aerosols and their precursors in the US. J. Geophys. Res.-Atoms. 2017, 122, 12020–12041. [Google Scholar] [CrossRef]
- Saxena, M.; Sharma, S.K.; Tomar, N.; Ghayas, H.; Sen, A.; Garhwal, R.S.; Gupta, N.C.; Mandal, T.K. Residential biomass burning emissions over northwestern Himalayan region of India: Chemical characterization and budget estimation. Aerosol. Air Qual. Res. 2016, 16, 504–518. [Google Scholar] [CrossRef]
- Chan, K. Biomass burning sources and their contributions to the local air quality in Hong Kong. Sci. Total Environ. 2017, 596, 212–221. [Google Scholar] [CrossRef]
- Zhou, S.; Collier, S.; Jaffe, D.A.; Briggs, N.L.; Hee, J.; Sedlacek, A.J., III; Kleinman, L.; Onasch, T.B.; Zhang, Q. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos. Chem. Phys. 2017, 17, 2477–2493. [Google Scholar] [CrossRef]
- Alvarado, M.; Lonsdale, C.; Yokelson, R.; Akagi, S.K.; Coe, H.; Craven, J.; Fischer, E.; McMeeking, G.; Seinfeld, J.; Soni, T. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral. Atmos. Chem. Phys. 2015, 15, 6667–6688. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, O.; Chen, X.; Wu, Q.; Gao, M.; Chen, H.; Qi, Y.; Wang, Z. Health impacts of long-term ozone exposure in China over 2013–2017. Environ. Int. 2020, 144, 106030. [Google Scholar] [CrossRef]
- Roy, A.; Choi, Y.; Souri, A.H.; Jeon, W.; Diao, L.; Pan, S.; Westenbarger, D. Effects of biomass burning emissions on air quality over the continental USA: A three-year comprehensive evaluation accounting for sensitivities due to boundary conditions and plume rise height. In Environmental Contaminants: Measurement, Modelling and Control; Gupta, T., Agarwal, A.K., Agarwal, R.A., Labhsetwar, N.K., Eds.; Springer: Singapore, 2018; pp. 245–278. [Google Scholar] [CrossRef]
- Ballesteros-González, K.; Sullivan, A.P.; Morales-Betancourt, R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Sci. Total Environ. 2020, 739, 139755. [Google Scholar] [CrossRef]
- Xu, L.; Crounse, J.D.; Vasquez, K.T.; Allen, H.; Wennberg, P.O.; Bourgeois, I.; Brown, S.S.; Campuzano-Jost, P.; Coggon, M.M.; Crawford, J.H.; et al. Ozone chemistry in western US wildfire plumes. Sci. Adv. 2021, 7, 3648. [Google Scholar] [CrossRef]
- Dreessen, J.; Sullivan, J.; Delgado, R. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12, 2015. J. Air Waste Manag. Assoc. 2016, 66, 842–862. [Google Scholar] [CrossRef]
- Jeon, W.; Choi, Y.; Souri, A.H.; Roy, A.; Diao, L.; Pan, S.; Lee, H.W.; Lee, S.-H. Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean. Sci. Total Environ. 2018, 613, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Korea Forest Service. 2020 Forest Fire Annual Report. Available online: https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardArticle.do?nttId=3156244&bbsId=BBSMSTR_1008&mn=NKFS_06_09_05 (accessed on 8 September 2022).
- Song, B.; Park, K. Temperature trend analysis associated with land-cover changes using time-series data (1980–2019) from 38 weather stations in South Korea. Sustain. Cities Soc. 2021, 65, 102615. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.; Yokelson, R.J.; Emmons, L.; Al-Saadi, J.; Orlando, J.; Soja, A. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef]
- Vongruang, P.; Wongwises, P.; Pimonsree, S. Assessment of fire emission inventories for simulating particulate matter in Upper Southeast Asia using WRF-CMAQ. Atmos. Pollut. Res. 2017, 8, 921–929. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.-i.; Woo, J.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.; Carmichael, G. MIX: A mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmos. Chem. Phys. 2015, 15, 34813–34869. [Google Scholar] [CrossRef]
- National Institute of Environmental Research (NIER). 2017 National Air Pollutant Emissions. Available online: https://www.air.go.kr/jbmd/sub90_detail.do?tabPage=1&detailKey=61025P06&inputSchTxt=&typeSchOption=titleNm&menuId=POT027 (accessed on 8 September 2022).
- Guenther, A.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008; p. 125. [Google Scholar]
- Uranishi, K.; Ikemori, F.; Shimadera, H.; Kondo, A.; Sugata, S. Impact of field biomass burning on local pollution and long-range transport of PM2.5 in Northeast Asia. Environ. Pollut. 2019, 244, 414–422. [Google Scholar] [CrossRef]
- Xu, R.; Tie, X.; Li, G.; Zhao, S.; Cao, J.; Feng, T.; Long, X. Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Sci. Total Environ. 2018, 645, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef]
- Choi, Y.; Jeon, W.; Roy, A.; Souri, A.H.; Diao, L.; Pan, S.; Eslami, E. CMAQ Modeling Archive for Exceptional Events Analyses. Available online: https://www.tceq.texas.gov/airquality/airmod/project/pj_report_pm.html (accessed on 8 September 2022).
- Val Martin, M.; Logan, J.; Kahn, R.; Leung, F.-Y.; Nelson, D.; Diner, D. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys. 2010, 10, 1491–1510. [Google Scholar] [CrossRef]
- Field, R.D.; Luo, M.; Fromm, M.; Voulgarakis, A.; Mangeon, S.; Worden, J. Simulating the Black Saturday 2009 smoke plume with an interactive composition-climate model: Sensitivity to emissions amount, timing, and injection height. J. Geophys. Res.-Atmos. 2016, 121, 4296–4316. [Google Scholar] [CrossRef] [PubMed]
- Mallia, D.V.; Kochanski, A.K.; Urbanski, S.P.; Lin, J.C. Optimizing smoke and plume rise modeling approaches at local scales. Atmosphere 2018, 9, 166. [Google Scholar] [CrossRef]
- Gipson, G.L. Process analysis. In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; Byun, D.W., Ching, J.K.S., Eds.; Environmental Protection Agency: Washington, DC, USA, 2016; pp. 16.1–16.37. [Google Scholar]
- Bae, M.; Kim, H.C.; Kim, B.-U.; Kim, S. Development and application of the backward-tracking model analyzer to track physical and chemical processes of air parcels during the transport. J. Korean Soc. Atmos. Environ. 2017, 33, 217–232. [Google Scholar] [CrossRef]
- Jeon, W.; Park, J.; Choi, Y.; Mun, J.; Kim, D.; Kim, C.-H.; Lee, H.-J.; Bak, J.; Jo, H.-Y. The mechanism of the formation of high sulfate concentrations over the Yellow Sea during the KORUS-AQ period: The effect of transport/atmospheric chemistry and ocean emissions. Atmos. Res. 2021, 261, 105756. [Google Scholar] [CrossRef]
- Kitayama, K.; Morino, Y.; Yamaji, K.; Chatani, S. Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms. Atmos. Environ. 2019, 198, 448–462. [Google Scholar] [CrossRef]
- Park, J.; Jeon, W.; Mun, J.; Kim, D. A Quantitative Analysis of the Effect of Ocean Emissions on the Simulated Ozone Concentration in South Korea. J. Environ. Sci. Int. 2021, 30, 413–424. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Ying, F.; White, S.J.; Jang, C.; Wu, X.; Gao, X.; Hong, S.; Shen, J.; Azzi, M. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. [Google Scholar] [CrossRef]
- Hurley, P.J.; Blockley, A.; Rayner, K. Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia. Atmos. Environ. 2001, 35, 1871–1880. [Google Scholar] [CrossRef]
- Kim, C.H.; Lee, S.H.; Jang, M.; Chun, S.N.; Kang, S.J.; Ko, K.K.; Lee, J.J.; Lee, H.J. A Study on statistical parameters for the evaluation of regional air quality modeling results—Focused on fine dust modeling. J. Environ. Impact Assess. 2020, 29, 272–285. [Google Scholar] [CrossRef]
- Chuang, M.-T.; Fu, J.S.; Lee, C.-T.; Lin, N.-H.; Gao, Y.; Wang, S.-H.; Sheu, G.-R.; Hsiao, T.-C.; Wang, J.-L.; Yen, M.-C. The simulation of long-range transport of biomass burning plume and short-range transport of anthropogenic pollutants to a mountain observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment. Aerosol. Air Qual. Res. 2016, 16, 2933–2949. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.S.; Huang, K.; Lin, N.-H.; Wang, S.-H.; Yang, C.-E. Analysis of the co-existence of long-range transport biomass burning and dust in the subtropical West Pacific Region. Sci. Rep. 2018, 8, 8962. [Google Scholar] [CrossRef]
- Toh, Y.Y.; Lim, S.F.; Von Glasow, R. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmos. Environ. 2013, 70, 435–446. [Google Scholar] [CrossRef]
- Mateos, A.C.; Amarillo, A.C.; Tavera Busso, I.; Carreras, H.A. Influence of meteorological variables and forest fires events on air quality in an urban area (Córdoba, Argentina). Arch. Environ. Contam. Toxicol. 2019, 77, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, L.S. Ambient carbon monoxide and its fate in the atmosphere. J. Air Pollut. Control Assoc. 1968, 18, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.-B.; Lee, S.-H.; Lee, H.-W.; Kim, H.-G. Process analysis of the impact of atmospheric recirculation on consecutive high-O3 episodes over the Seoul Metropolitan Area in the Korean Peninsula. Atmos. Environ. 2012, 63, 213–222. [Google Scholar] [CrossRef]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Gao, W.; Tie, X.; Xu, J.; Huang, R.; Mao, X.; Zhou, G.; Chang, L. Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Sci. Total Environ. 2017, 603, 425–433. [Google Scholar] [CrossRef]
- Parrish, D.; Murphy, P.; Albritton, D.; Fehsenfeld, F. The measurement of the photodissociation rate of NO2 in the atmosphere. Atmos. Environ. (1967) 1983, 17, 1365–1379. [Google Scholar] [CrossRef]
- Jiménez, P.; Parra, R.; Gasso, S.; Baldasano, J.M. Modeling the ozone weekend effect in very complex terrains: A case study in the Northeastern Iberian Peninsula. Atmos. Environ. 2005, 39, 429–444. [Google Scholar] [CrossRef]
- Michelsen, H.; Salawitch, R.; Wennberg, P.; Anderson, J. Production of O (¹D) from photolysis of O3. Geophys. Res. Lett. 1994, 21, 2227–2230. [Google Scholar] [CrossRef]
Date | 24 April 2020 | 25 April 2020 | Total | ||
---|---|---|---|---|---|
Time (UTC) | 1722 | 0425 | |||
Latitude (°N) | 36.542 | 36.543 | 36.536 | 36.532 | |
Longitude (°E) | 128.602 | 128.591 | 128.588 | 128.563 | |
NO | 104 | 104 | 104 | 104 | 105 |
NO2 | 104 | 104 | 104 | 104 | 105 |
CO | 106 | 106 | 106 | 106 | 107 |
VOCs | 106 | 106 | 106 | 106 | 106 |
SO2 | 104 | 104 | 104 | 104 | 105 |
NH3 | 105 | 105 | 105 | 105 | 105 |
NR 1) | 104 | 104 | 104 | 104 | 105 |
CH4 | 105 | 105 | 105 | 105 | 106 |
CMAQ Runs | CMAQ Mean (ppb) | RMSE (ppb) | MBE (ppb) | IOA |
---|---|---|---|---|
BASE | 336.75 | 122.29 | −34.82 | 0.63 |
FINN_5ly | 346.61 | 106.58 | −24.89 | 0.77 |
FINN_10ly | 342.19 | 112.33 | −29.35 | 0.72 |
FINN_pbl | 347.89 | 106.55 | −23.60 | 0.78 |
Time | O3 Change Rate | Production Rate | Loss Rate | ||
---|---|---|---|---|---|
R1 | R2 | R3 | R4 | ||
09 LST | 0.80 | 35.33 | −34.35 | −0.19 | 0.03 |
11 LST | 0.32 | 8.57 | −7.38 | −0.03 | −0.81 |
13 LST | 0.44 | 4.47 | −2.29 | −0.01 | −1.62 |
15 LST | 0.13 | 2.31 | −0.76 | −0.01 | −1.35 |
17 LST | 0.01 | 0.87 | −0.09 | −0.00 | −0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Jeon, W.; Park, J.; Mun, J.; Choi, H.; Kim, C.-H.; Lee, H.-J.; Jo, H.-Y. A Numerical Analysis of the Changes in O3 Concentration in a Wildfire Plume. Remote Sens. 2022, 14, 4549. https://doi.org/10.3390/rs14184549
Kim D, Jeon W, Park J, Mun J, Choi H, Kim C-H, Lee H-J, Jo H-Y. A Numerical Analysis of the Changes in O3 Concentration in a Wildfire Plume. Remote Sensing. 2022; 14(18):4549. https://doi.org/10.3390/rs14184549
Chicago/Turabian StyleKim, Dongjin, Wonbae Jeon, Jaehyeong Park, Jeonghyeok Mun, Hyunsik Choi, Cheol-Hee Kim, Hyo-Jung Lee, and Hyun-Young Jo. 2022. "A Numerical Analysis of the Changes in O3 Concentration in a Wildfire Plume" Remote Sensing 14, no. 18: 4549. https://doi.org/10.3390/rs14184549
APA StyleKim, D., Jeon, W., Park, J., Mun, J., Choi, H., Kim, C. -H., Lee, H. -J., & Jo, H. -Y. (2022). A Numerical Analysis of the Changes in O3 Concentration in a Wildfire Plume. Remote Sensing, 14(18), 4549. https://doi.org/10.3390/rs14184549