Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake
Abstract
:1. Introduction
2. The Chinese National EEWS
2.1. Seismic Network
2.2. Software System Structure
2.3. Early-Warning Information Generating Criteria
- Criteria 1: Speed priority. As long as there is an EEW software system result, and the number of stations participating in the location is greater than or equal to 3, this result will be released;
- Criteria 2: Stable magnitude. The EEW software system used for outputting the result is specified according to whether or not its magnitude estimation is stable;
- Criteria 3: Having two different software system processing results at the same time;
- Criteria 4: Having two L2DMs’ results and two different software system processing results at the same time;
- Criteria 5: Having two L2DMs’ results and each L2DM’s result containing two different software system processing results at the same time.
- Epicenter and depth: When the interspace angle is less than or equal to 180°, select the first five stations participating in the location to calculate the average epicenter distance of each result, and take the one with the minimum average epicenter distance as the result. Otherwise, when the interspace angle is larger than 180°, select the epicenter and depth with more stations participating in the location as the result.
- Magnitude: When the deviation between the maximum and the minimum magnitudes outputted by the individual software systems at the same time is less than 1.0, select the maximum one as the result. Otherwise, the averaged magnitude of the maximum and the minimum is set as the magnitude result.
3. Performance during the 2022 Lushan M6.1 Earthquake
3.1. Real-Time Source Characterization
3.2. Alerting Performance
3.2.1. Theoretical Performance from the Station’s Point of View
3.2.2. Real Performance from the Early-Warning Terminal’s Point of View
4. Discussion
4.1. Source Parameters Estimation for the First Alert
4.2. Additional Data Latency in Ordinary Stations
4.3. Algorithm Used for Ground-Motion Prediction
4.4. Relatively Large Blind Zone
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremen, G.; Galasso, C. Earthquake early warning: Recent advances and perspectives. Earth-Sci. Rev. 2020, 205, 103184. [Google Scholar] [CrossRef]
- Cuéllar, A.; Suárez, G.; Espinosa-Aranda, J.M. Performance evaluation of the earthquake detection and classification algorithm 2(tS-tP) of the Seismic Alert System of Mexico (SASMEX). Bull. Seismol. Soc. Am. 2017, 107, 1451–1463. [Google Scholar] [CrossRef]
- Santos-Reyes, J. How useful are earthquake early warnings? The case of the 2017 earthquakes in Mexico city. Int. J. Disaster Risk Reduct. 2019, 40, 101148. [Google Scholar] [CrossRef]
- Hoshiba, M.; Kamigaichi, O.; Saito, M.; Tsukada, S.Y.; Hamada, N. Earthquake early warning starts nationwide in Japan. Eos. Trans. AGU 2008, 89, 73–80. [Google Scholar] [CrossRef]
- Kodera, Y.; Hayashimoto, N.; Tamaribuchi, K.; Noguchi, K.; Moriwaki, K.; Takahashi, R.; Morimoto, M.; Okamoto, K.; Hoshiba, M. Developments of the nationwide earthquake early warning system in Japan after the 2011 Mw9.0 Tohoku-Oki earthquake. Front. Earth Sci. 2021, 9, 726045. [Google Scholar] [CrossRef]
- Chung, A.I.; Meier, M.A.; Andrews, J.; Böse, M.; Crowell, B.W.; McGuire, J.J.; Smith, D.E. ShakeAlert earthquake early warning system performance during the 2019 Ridgecrest earthquake sequence. Bull. Seismol. Soc. Am. 2020, 110, 1904–1923. [Google Scholar] [CrossRef]
- Peng, H.; Wu, Z.; Wu, Y.-M.; Yu, S.; Zhang, D.; Huang, W. Developing a prototype earthquake early warning system in the Beijing Capital Region. Seismol. Res. Lett. 2011, 82, 394–403. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, X.; Wei, Y.; Li, J.; Kang, L.; Wang, S.; Huang, L.; Yu, P. An earthquake early warning system in Fujian, China. Bull. Seismol. Soc. Am. 2016, 106, 755–765. [Google Scholar] [CrossRef]
- Peng, C.; Jiang, P.; Chen, Q.; Ma, Q.; Yang, J. Performance evaluation of a dense MEMS-based seismic sensor array deployed in the Sichuan-Yunnan border region for earthquake early warning. Micromachines 2019, 10, 735. [Google Scholar] [CrossRef]
- Peng, C.; Ma, Q.; Jiang, P.; Huang, W.; Yang, D.; Peng, H.; Chen, L.; Yang, J. Performance of a hybrid demonstration earthquake early warning system in the Sichuan-Yunnan border region. Seismol. Res. Lett. 2020, 91, 835–846. [Google Scholar] [CrossRef]
- Peng, C.; Jiang, P.; Ma, Q.; Wu, P.; Su, J.; Zheng, Y.; Yang, J. Performance evaluation of an earthquake early warning system in the 2019-2020 M6.0 Changning, Sichuan, China, seismic sequence. Front. Earth Sci. 2021, 9, 699941. [Google Scholar] [CrossRef]
- Wu, Y.-M. Progress on development of an earthquake early warning system using low-cost sensors. Pure Appl. Geophys. 2014, 172, 2343–2351. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Liang, W.T.; Mittal, H.; Chao, W.A.; Lin, C.H.; Huang, B.S.; Lin, C.M. Performance of a low-cost earthquake early warning system (P-Alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismol. Res. Lett. 2016, 87, 1050–1059. [Google Scholar] [CrossRef]
- Hsu, T.; Lin, P.Y.; Wang, H.H.; Chiang, H.W.; Chang, Y.W.; Kuo, C.H.; Lin, C.M.; Wen, K.L. Comparing the performance of the NEEWS earthquake early warning system against the CWB system during the 6 February 2018 MW 6.2 Hualien earthquake. Geophys. Res. Lett. 2018, 45, 6001–6007. [Google Scholar] [CrossRef]
- Clinton, J.; Zollo, A.; Marmureanu, A.; Zulfikar, C.; Parolai, S. State-of-the art and future of earthquake early warning in the European region. Bull. Earthq. Eng. 2016, 14, 2441–2458. [Google Scholar] [CrossRef]
- Zuccolo, E.; Cremen, G.; Galasso, C. Comparing the performance of regional earthquake early warning algorithms in Europe. Front. Earth Sci. 2021, 9, 686272. [Google Scholar] [CrossRef]
- Cremen, G.; Galasso, C.; Zuccolo, E. Investigating the potential effectiveness of earthquake early warning across Europe. Nat. Commun. 2022, 13, 639. [Google Scholar] [CrossRef]
- Massin, F.; Clinton, J.; Böse, M. Status of earthquake early warning in Switzerland. Front. Earth Sci. 2021, 9, 707654. [Google Scholar] [CrossRef]
- Mittal, H.; Wu, Y.-M.; Sharma, M.L.; Yang, B.M.; Gupta, S. Testing the performance of earthquake early warning system in Northern India. Acta Geophys. 2019, 67, 59–75. [Google Scholar] [CrossRef]
- Carranza, M.; Mattesini, M.; Buforn, E.; Zollo, A.; Torrego, I. Four years of earthquake early warning in Southern Iberia: 2016–2019. Front. Earth Sci. 2021, 9, 696191. [Google Scholar] [CrossRef]
- Porras, J.; Massin, F.; Arroyo-Solórzano, M.; Arroyo, I.; Linkimer, L.; Böse, M.; Clinton, J. Preliminary results of an earthquake early warning system in Costa Rica. Front. Earth Sci. 2021, 9, 700843. [Google Scholar] [CrossRef]
- Kurzon, I.; Nof, R.N.; Laporte, M.; Lutzky, H.; Polozov, A.; Zakosky, D.; Shulman, H.; Goldenberg, A.; Tatham, B.; Hamiel, Y. The “TRUAA” seismic network: Upgrading the Israel seismic network—Toward national earthquake early warning system. Seismol. Res. Lett. 2020, 91, 3236–3255. [Google Scholar] [CrossRef]
- Nof, R.N.; Lior, I.; Kurzon, I. Earthquake early warning system in Israel—Towards an operational stage. Front. Earth Sci. 2021, 9, 684421. [Google Scholar] [CrossRef]
- Schlesinger, A.; Kukovica, J.; Rosenberger, A.; Heesemann, M.; Pirenne, B.; Robinson, J.; Morley, M. An earthquake early warning system for Southwestern British Columbia. Front. Earth Sci. 2021, 9, 684084. [Google Scholar] [CrossRef]
- Heidari, R.; Shomali, Z.H.; Ghayamghamian, M.R. Magnitude-scaling relations using period parameters τc and τpmax, for Tehran region, Iran. Geophys. J. Int. 2012, 192, 275–284. [Google Scholar] [CrossRef]
- Nazeri, S.; Shomali, Z.H. Rapid estimation of the epicentral distance in the earthquake early warning system around the Tehran region, Iran. Seismol. Res. Lett. 2019, 90, 1916–1922. [Google Scholar] [CrossRef]
- Pazos, A.; Romeu, N.; Lozano, L.; Colom, Y.; López, M.M.; Goula, X.; Jara, J.A.; Cantavella, J.V.; Zollo, A.; Hanka, W.; et al. A regional approach for earthquake early warning in South West Iberia: A feasibility study. Bull. Seismol. Soc. Am. 2015, 105, 560–567. [Google Scholar] [CrossRef]
- Fujinawa, Y.; Noda, Y. Japan’s earthquake early warning system on 11 March 2011: Performance, shortcomings, and changes. Earthq. Sepctra 2013, 29, S341–S368. [Google Scholar] [CrossRef]
- Cuéllar, A.; Espinosa-Aranda, J.M.; Suárez, G.; Ibarrola, G.; Uribe, A.; Rodríguez, F.H.; Frontana, B. The Mexican Seismic Alert System (SASMEX): Its alert signals, broadcast results and performance during the M 7.4 Punta Maldonado earthquake of 20 March 2012. In Early Warning for Geological Disasters, 1st ed.; Wenzel, F., Zschau, J., Eds.; Springer: Berlin, Germany, 2014; pp. 71–87. [Google Scholar]
- Kodera, Y.; Saitou, J.; Hayashimoto, N.; Adachi, S.; Morimoto, M.; Nishimae, Y.; Hoshiba, M. Earthquake early warning for the 2016 Kumamoto earthquake: Performance evaluation of the current system and the next-generation methods of the Japan Meteorological Agency. Earth Planets Space 2016, 68, 202. [Google Scholar] [CrossRef]
- Suárez, G.; Espinosa-Aranda, J.M.; Cuéllar, A.; Uribe, A.; Ibarrola, G.; García, A.; Islas, R.; Camarillo, L. Evaluation of the Seismic Alert System of Mexico (SASMEX) during the 23 June 2020, Oaxaca earthquake (Mw 7.4). Nat. Hazards 2021, 108, 3085–3098. [Google Scholar] [CrossRef]
- Peng, C.; Chen, Y.; Chen, Q.; Yang, J.; Wang, H.; Zhu, X.; Xu, Z.; Zheng, Y. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning. Comput. Geosci. 2017, 100, 179–187. [Google Scholar] [CrossRef]
- Patanè, D.; Tusa, G.; Yang, W.; Astuti, A.; Colino, A.; Costanza, A.; D’Anna, G.; Prima, S.D.; Fertitta, G.; Mangiagli, S.; et al. The Urban Seismic Observatory of Catania (Italy): A real-time seismic monitoring at urban scale. Remote Sens. 2022, 14, 2583. [Google Scholar] [CrossRef]
- Horiuchi, S.; Negishi, H.; Abe, K.; Kamimura, A.; Fujinawa, Y. An automatic processing system for broadcasting earthquake alarms. Bull. Seismol. Soc. Am. 2005, 95, 708–718. [Google Scholar] [CrossRef]
- Kuyuk, H.S.; Allen, R.M. A global approach to provide magnitude estimates for earthquake early warning alerts. Geophys. Res. Lett. 2013, 40, 6329–6333. [Google Scholar] [CrossRef]
- Colombelli, S.; Zollo, A.; Festa, G.; Kanamori, H. Early magnitude and potential damage zone estimates for the great Mw 9 Tokohu-Oki earthquake. Geophys. Res. Lett. 2012, 39, L22306. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, H.; Li, J.; Wei, Y.; Ma, Q. Research on continuous location method used in earthquake early warning system. Chin. J. Geophys. 2012, 55, 925–936. (In Chinese) [Google Scholar] [CrossRef]
- Schweitzer, J. HYPOSAT—An enhanced routine to locate seismic events. Pure Appl. Geophys. 2001, 158, 277–289. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Zao, C.; Wang, Q.; Hua, W.; Zhou, L. Measurement of earthquake size. Earthq. Res. China 2014, 28, 285–298. [Google Scholar]
- Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthq. Spectra 1999, 15, 557–564. [Google Scholar] [CrossRef]
- Böse, M.; Smith, D.E.; Felizardo, C.; Meier, M.A.; Heaton, T.H.; Clinton, J.F. FinDer v.2: Improved real-time ground-motion predictions for M2-M9 with seismic finite-source characterization. Geophys. J. Int. 2018, 212, 725–742. [Google Scholar] [CrossRef]
- Minson, S.E.; Meier, M.-A.; Baltay, A.S.; Hanks, T.C.; Cochran, E.S. The limits of earthquake early warning: Timeliness of ground motion estimates. Sci. Adv. 2018, 4, eaaq0504. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Smith, W.H.F. New, improved version of Generic Mapping Tools released. Eos Trans. AGU 1998, 79, 579. [Google Scholar] [CrossRef]
- Meier, M.A.; Kodera, Y.; Böse, M.; Chung, A.; Hoshiba, M.; Cochran, E.; Minson, S.; Hauksson, E.; Heaton, T. How often can earthquake early warning systems alert sites with high intensity ground motion? J. Geophys. Res.-Sol. Earth 2020, 125, e2019JB017718. [Google Scholar] [CrossRef]
- Colombelli, S.; Carotenuto, F.; Elia, L.; Zollo, A. Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): Application to the PRESTo EEWS in southern Italy. Nat. Hazards Earth Syst. Sci. 2020, 20, 921–931. [Google Scholar] [CrossRef]
- Meier, M.A.; Ampuero, J.P.; Heaton, T.H. The hidden simplicity of subduction megathrust earthquakes. Science 2017, 357, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Trugman, D.T.; Page, M.T.; Minson, S.E.; Cochran, E.S. Peak ground displacement saturates exactly when expected: Implications for earthquake early warning. J. Geophys. Res. 2019, 124, 4642–4653. [Google Scholar] [CrossRef]
- Peng, C.; Yang, J.; Zheng, Y.; Zhu, X.; Xu, Z.; Chen, Y. New τc regression relationship derived from all P wave time windows for rapid magnitude estimation. Geophys. Res. Lett. 2017, 44, 1724–1731. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Song, J.; Wang, Y. Magnitude estimation for earthquake early warning using a deep convolutional neural network. Front. Earth Sci. 2021, 9, 653226. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Song, J. Magnitude estimation for earthquake early warning with multiple parameter inputs and a support vector machine. Seismol. Res. Lett. 2022, 93, 126–136. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Ma, Q.; He, B.; Song, J. Support vector machine-based magnitude estimation using transfer learning for Sichuan-Yunnan region, China. Bull. Seismol. Soc. Am. 2022, 112, 894–904. [Google Scholar] [CrossRef]
- Li, J.; Böse, M.; Feng, Y.; Yang, C. Real-time characterization of finite rupture and its implication for earthquake early warning: Application of FinDer to existing and planned stations in Southwest China. Front. Earth Sci. 2021, 9, 699560. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
Device | Main Characteristic | Specification |
---|---|---|
Broad-band seismometer | Technology | Force feedback (force–balance) velocity sensor |
Configuration | Triaxial orthogonal (ZNE) | |
Velocity output band (flat response within −3 dB crossing points) | 60 s to 50 Hz | |
Output sensitivity | 2000 V/ms−1 differential output | |
Peak full-scale output voltage | Differential: ±20 V, Single-ended: ±10 V | |
Self noise below NLNM (New Low Noise Model; Peterson, 1993, USGS) | 60 s~5 Hz | |
Dynamic range | >140 dB | |
Lowest spurious resonance | >100 Hz | |
Power supply voltage | 9~18 V DC | |
Power consumption (at 12 V DC) | <2 W | |
Force-balanced accelerometer | Configuration | Triaxial orthogonal |
Peak full-scale output | ±2.5/±5/±10 V, Single-ended or differential (optional) | |
Gain | ≥±2 g | |
Dynamic range | ≥120 dB | |
Acceleration output band | DC~80 Hz | |
Linearity | Better than 1% | |
Noise RMS (Root Mean Square) | ≤10−6 g | |
Data acquisition system | Channels | Three or six at 24 bits |
Input impedance | ≥100 kΩ (Single-ended) | |
Dynamic range | ≥135 dB at 50 samples per second | |
Digital filter | FIR digital filter, selectable linear phase shift and minimum phase shift filter | |
Out-of-band rejection | >135 dB | |
Output sampling rates | 1, 10, 20, 50, 100, 200 samples per second, user-selectable, and multiple independent data streams at different sampling rates for all channels (transmission and recording) | |
Timing source precision | Accuracy when GNSS locked ±100 ns. Typical drift when unsynchronized (without GNSS) <1 ms per day | |
Timing sources | GNSS (BeiDou, GPS, and GLONASS) | |
Calibration signal generator | Step, Sine, or Binary codes (optional) with adjustable amplitude | |
Real-time data delay | <0.5 s | |
Data recording formats | miniSEED or other formats with miniSEED conversion software | |
Data streaming protocols | Supporting the low-latency data-transmission protocol | |
Power supply | 9–18 V DC | |
Power consumption | <7 W (3 channels), <8 W (6 channels) | |
Low-cost MEMS intensity sensor | Measurement range | −19.6 m/s2~19.6 m/s2 (east–west and north–south) −19.6 m/s2~19.6 m/s2 or −29.4 m/s2~9.8 m/s2 (vertical) |
Measurement deviation | <5% (0.1~20 Hz) | |
Linearity | Better than 1% | |
Output band | Lower cutoff frequency: ≤0.01 Hz (−3 dB) Upper cutoff frequency: ≥40 Hz (−3 dB with sampling rates of 100 Hz or 200 Hz) Upper cutoff frequency: ≥40 Hz (−3 dB with sampling rates of 50 Hz) | |
Dynamic range | >80 dB (0.1~20 Hz) | |
Output sampling rates | 50, 100, 200 samples per second, user-selectable |
Report Number | Software System/ Decision Module | Origin Time | Issuing Time | Amount of Time Spent | Longitude (°E) | Latitude (°N) | Depth (km) | M | Epicentral SI | Number of Stations |
---|---|---|---|---|---|---|---|---|---|---|
1 | CA-L1DM | 17:00:08.0 | 17:00:13.8 | 5.7 | 102.929 | 30.385 | 17 | 4.7 | 6.5 | 7 |
SC-L2DM | 17:00:08.0 | 17:00:13.5 | 5.4 | 102.929 | 30.385 | 17 | 4.2 | 5.8 | 7 | |
SC-JEEW | 17:00:08.0 | 17:00:13.4 | 5.3 | 102.929 | 30.385 | 17 | 4.7 | 6.5 | 7 | |
SC-FJEEW | 17:00:09.0 | 17:00:13.4 | 5.3 | 102.929 | 30.355 | 5 | 3.6 | 5.1 | 4 | |
CA-L2DM | 17:00:08.0 | 17:00:13.7 | 5.6 | 102.929 | 30.385 | 17 | 4.7 | 6.5 | 7 | |
CA-JEEW | 17:00:08.0 | 17:00:13.7 | 5.6 | 102.929 | 30.385 | 17 | 4.7 | 6.5 | 7 | |
2 | CA-L1DM | 17:00:08.2 | 17:00:16.0 | 7.9 | 102.932 | 30.385 | 15 | 5.1 | 7.0 | 12 |
SC-L2DM | 17:00:08.2 | 17:00:15.5 | 7.4 | 102.932 | 30.385 | 15 | 4.3 | 6.0 | 12 | |
SC-JEEW | 17:00:08.2 | 17:00:15.5 | 7.4 | 102.932 | 30.385 | 15 | 5.1 | 7.0 | 12 | |
SC-FJEEW | 17:00:09.0 | 17:00:13.4 | 5.3 | 102.929 | 30.355 | 5 | 3.6 | 5.1 | 4 | |
CA-L2DM | 17:00:08.2 | 17:00:15.8 | 7.7 | 102.932 | 30.385 | 15 | 5.1 | 7.0 | 12 | |
CA-JEEW | 17:00:08.2 | 17:00:15.8 | 7.7 | 102.932 | 30.385 | 15 | 5.1 | 7.0 | 12 | |
CA-FJEEW | 17:00:09.0 | 17:00:14.0 | 5.9 | 102.929 | 30.383 | 5 | 4.5 | 6.2 | 8 | |
3 | CA-L1DM | 17:00:08.0 | 17:00:16.9 | 8.8 | 102.929 | 30.383 | 10 | 5.4 | 7.4 | 17 |
SC-L2DM | 17:00:08.0 | 17:00:16.6 | 8.5 | 102.929 | 30.383 | 10 | 4.8 | 6.6 | 17 | |
SC-JEEW | 17:00:08.3 | 17:00:16.6 | 8.5 | 102.930 | 30.384 | 15 | 5.4 | 7.4 | 15 | |
SC-FJEEW | 17:00:08.0 | 17:00:15.9 | 7.8 | 102.929 | 30.383 | 10 | 4.2 | 5.8 | 17 | |
CA-L2DM | 17:00:09.0 | 17:00:16.8 | 8.7 | 102.922 | 30.383 | 5 | 5.4 | 7.4 | 16 | |
CA-JEEW | 17:00:08.3 | 17:00:16.8 | 8.7 | 102.930 | 30.384 | 14 | 5.4 | 7.4 | 15 | |
CA-FJEEW | 17:00:09.0 | 17:00:16.7 | 8.6 | 102.922 | 30.383 | 5 | 5.1 | 7.0 | 16 | |
4 | CA-L1DM | 17:00:09.0 | 17:00:20.0 | 11.9 | 102.929 | 30.383 | 5 | 5.7 | 7.8 | 31 |
SC-L2DM | 17:00:09.0 | 17:00:18.7 | 10.6 | 102.936 | 30.390 | 5 | 5.5 | 7.5 | 28 | |
SC-JEEW | 17:00:08.3 | 17:00:18.7 | 10.6 | 102.929 | 30.384 | 14 | 5.5 | 7.5 | 20 | |
SC-FJEEW | 17:00:09.0 | 17:00:18.5 | 10.4 | 102.936 | 30.390 | 5 | 4.8 | 6.6 | 28 | |
CA-L2DM | 17:00:09.0 | 17:00:19.9 | 11.8 | 102.929 | 30.383 | 5 | 5.7 | 7.8 | 31 | |
CA-JEEW | 17:00:08.3 | 17:00:18.9 | 10.8 | 102.930 | 30.385 | 14 | 5.4 | 7.4 | 20 | |
CA-FJEEW | 17:00:09.0 | 17:00:19.9 | 11.8 | 102.929 | 30.383 | 5 | 5.7 | 7.8 | 31 | |
5 | CA-L1DM | 17:00:09.0 | 17:00:24.6 | 16.5 | 102.922 | 30.376 | 10 | 6.1 | 8.3 | 64 |
SC-L2DM | 17:00:09.0 | 17:00:24.0 | 15.9 | 102.922 | 30.376 | 10 | 6.0 | 8.2 | 64 | |
SC-JEEW | 17:00:08.4 | 17:00:24.0 | 15.9 | 102.929 | 30.387 | 13 | 5.6 | 7.7 | 42 | |
SC-FJEEW | 17:00:09.0 | 17:00:23.7 | 15.6 | 102.922 | 30.376 | 10 | 6.0 | 8.2 | 64 | |
CA-L2DM | 17:00:09.0 | 17:00:24.3 | 16.2 | 102.922 | 30.376 | 10 | 6.1 | 8.3 | 49 | |
CA-JEEW | 17:00:08.3 | 17:00:24.0 | 15.9 | 102.927 | 30.385 | 14 | 5.5 | 7.6 | 38 | |
CA-FJEEW | 17:00:09.0 | 17:00:24.3 | 16.2 | 102.922 | 30.376 | 10 | 6.1 | 8.3 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Jiang, P.; Ma, Q.; Su, J.; Cai, Y.; Zheng, Y. Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake. Remote Sens. 2022, 14, 4269. https://doi.org/10.3390/rs14174269
Peng C, Jiang P, Ma Q, Su J, Cai Y, Zheng Y. Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake. Remote Sensing. 2022; 14(17):4269. https://doi.org/10.3390/rs14174269
Chicago/Turabian StylePeng, Chaoyong, Peng Jiang, Qiang Ma, Jinrong Su, Yichuan Cai, and Yu Zheng. 2022. "Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake" Remote Sensing 14, no. 17: 4269. https://doi.org/10.3390/rs14174269
APA StylePeng, C., Jiang, P., Ma, Q., Su, J., Cai, Y., & Zheng, Y. (2022). Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake. Remote Sensing, 14(17), 4269. https://doi.org/10.3390/rs14174269