Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach
Abstract
:1. Introduction
2. Data
2.1. Sentinel-2 Data
- The spatial resolution of 13 bands, including band 2 (blue), band 3 (green), band 4 (red), and band 8 (near-infrared) can reach 10 m, which provides the detailed characteristics of coastal areas where the seabed depth may be highly uneven.
- The 10 spectral bands selected in the study cover the range of 490–2190 nm, including the optical properties, depth, and spectral information of the bottom substrate (visible domain).
- L2A data is the surface reflectance data product obtained by the official atmospheric correction based on L1C. There is no need for other preprocessing. The cloud content of remote sensing images selected for water depth inversion is less than 1%, so there is no need for cloud removal.
2.2. Bathymetric Data
- The vertical accuracy of the LiDAR in measuring shallow water areas can reach ((0.252) + (0.0075 × d)2) m under 95% confidence level (d is water depth); the vertical accuracy of the LiDAR in measuring deep water areas can reach ((0.302) + (0.013 × d)2) m under a 95% confidence level.
- The horizontal accuracy of the LiDAR can reach (3.5 + 0.05 × d) m at a 95% confidence level.
- The LiDAR data can be obtained free of charge and processed conveniently.
3. Methods
3.1. Method Overview
3.2. Bathymetry from ICESat-2 ATL03
- It is necessary to convert the point cloud from WGS84 ellipsoidal height to orthogonal height; this is because even though the length of the laser track in our study area is short, there is a tilt of the sea level in the ellipsoidal height.
- Noise filtering is implemented based on a two-dimensional window filter, with each point as the center, setting the window size and the point density threshold within the window to filter out discrete noise points. In most cases, the manual process is necessary.
- Sea level and seafloor determination are important to depth calculation. The sea level was determined based on histogram statistics at each points segment near the sea level, referring to two rules: 1. the points density of sea level is relatively high near the surface; 2. sea level is higher than seafloor.
- Refraction correction is performed on the seafloor points according to the algorithm proposed by Parrish et al. [6].
3.3. Deep Learning Architecture
3.4. Accuracy Assessment
4. Model Results
4.1. Convolution Window Size Tuning
4.2. Bathymetry Maps of Models
4.3. Accuracy Analysis of Bathymetric Estimates
5. Discussion
5.1. Error Analysis of SDB
5.2. Comparative Analysis of the Results of the Study Area
5.3. Spatial Distribution of the Error
5.4. Model Portability
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, H.; Liu, H.; Wang, L.; Filippi, A.M.; Heyman, W.D.; Beck, R.A. Geographically Adaptive Inversion Model for Improving Bathymetric Retrieval From Satellite Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 465–476. [Google Scholar] [CrossRef]
- Schwarz, R.; Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Design and Evaluation of a Full-Wave Surface and Bottom-Detection Algorithm for Lidar Bathymetry of Very Shallow Waters. ISPRS J. Photogramm. Remote Sens. 2019, 150, 1–10. [Google Scholar] [CrossRef]
- Janowski, Ł.; Tęgowski, J.; Nowak, J. Seafloor Mapping Based on Multibeam Echosounder Bathymetry and Backscatter Data Using Object-Based Image Analysis: A Case Study from the Rewal Site, the Southern Baltic. Oceanol. Nowak Hydrobiol. Stud. 2018, 47, 248–259. [Google Scholar] [CrossRef]
- Albright, A.; Glennie, C. Nearshore Bathymetry From Fusion of Sentinel-2 and ICESat-2 Observations. IEEE Geosci. Remote Sens. Lett. 2020, 18, 900–904. [Google Scholar] [CrossRef]
- Forfinski-Sarkozi, N.A.; Parrish, C.E. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS. Remote Sens. 2016, 8, 772. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Le, Y.; Zhang, D.; Yan, Q.; Dong, Y.; Han, W.; Wang, L. Nearshore Bathymetry Based on Icesat-2 and Multispectral Im-ages: Comparison between Sentinel-2, Landsat-8, and Testing Gaofen-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2449–2462. [Google Scholar] [CrossRef]
- Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, Ó. Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sens. Environ. 2015, 159, 102–116. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuarine, Coast. Shelf Sci. 2019, 226, 106277. [Google Scholar] [CrossRef]
- Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al. Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol. Oceanogr. Methods 2011, 9, 396–425. [Google Scholar] [CrossRef] [Green Version]
- Lyzenga, D.; Malinas, N.; Tanis, F. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F. Ubathy: A New Ap-proach for Bathymetric Inversion from Video Imagery. Remote Sens. 2019, 11, 2722. [Google Scholar] [CrossRef]
- Hedley, J.; Roelfsema, C.; Phinn, S. Efficient radiative transfer model inversion for remote sensing applications. Remote Sens. Environ. 2009, 113, 2527–2532. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E.; Yung, Y.-K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. Int. J. Remote Sens. 2018, 40, 2855–2879. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Xu, D.; Huang, E. A dual band algorithm for shallow water depth retrieval from high spatial resolution imagery with no ground truth. ISPRS J. Photogramm. Remote Sens. 2019, 151, 1–13. [Google Scholar] [CrossRef]
- Kerr, J.M.; Purkis, S. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data. Remote Sens. Environ. 2018, 210, 307–324. [Google Scholar] [CrossRef]
- Danilo, C.; Melgani, F. High-Coverage Satellite-Based Coastal Bathymetry through a Fusion of Physical and Learning Methods. Remote Sens. 2019, 11, 376. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Shao, Y.; Wang, S.; Tian, W.; Wang, X.; Zhang, C. Shallow Water Depth Retrieval From Multitemporal Sentinel-1 SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2991–3000. [Google Scholar] [CrossRef]
- Su, H.; Liu, H.; Wu, Q. Prediction of Water Depth From Multispectral Satellite Imagery—The Regression Kriging Alternative. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2511–2515. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Zhang, Z.; Zhang, J.-Y. Bathymetry Retrieval Method of LiDAR Waveform Based on Multi-Gaussian Functions. J. Coast. Res. 2019, 90, 324–331. [Google Scholar] [CrossRef]
- Tremeau, A.; Colantoni, P. Regions adjacency graph applied to color image segmentation. IEEE Trans. Image Process. 2000, 9, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines; Springer: Berlin, Germany, 2015; pp. 67–80. [Google Scholar]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Tonion, F.; Pirotti, F.; Faina, G.; Paltrinieri, D. A machine learning approach to multispectral satellite derived bathymetry. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 565–570. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Zhang, J.; Ma, Y.; Chen, A.-N.; Cheng, J.; Wan, J.-X. Satellite-Derived Bathymetry Model in the Arctic Waters Based on Support Vector Regression. J. Coast. Res. 2019, 90, 294–301. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Su, H.; Wang, J. Bathymetry retrieval from optical images with spatially distributed support vector machines. GIScience Remote Sens. 2018, 56, 323–337. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Ba-thymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Li, C.; Chen, Y.; Yang, L. Bathymetry Model Based on Spectral and Spatial Multifeatures of Remote Sensing Image. IEEE Geosci. Remote Sens. Lett. 2019, 17, 37–41. [Google Scholar] [CrossRef]
- Wan, J.; Ma, Y. Shallow Water Bathymetry Mapping of Xinji Island Based on Multispectral Satellite Image using Deep Learning. J. Indian Soc. Remote Sens. 2021, 49, 2019–2032. [Google Scholar] [CrossRef]
- Ai, B.; Wen, Z.; Wang, Z.; Wang, R.; Su, D.; Li, C.; Yang, F. Convolutional Neural Network to Retrieve Water Depth in Marine Shallow Water Area From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2888–2898. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lai, W.; Lee, Z.; Wang, J.; Wang, Y.; Garcia, R.; Zhang, H. A Portable Algorithm to Retrieve Bottom Depth of Optically Shallow Waters from Top-Of-Atmosphere Measurements. J. Remote Sens. 2022, 2022, 9831947. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A.; Lee, J.; Luthcke, S.B.; Rebold, T. ATLAS/ICESat-L2A Global Geolocated Photon Data, Version 5; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- NOAA Office for Coastal Management [EB/OL]. Available online: https://coast.noaa.gov (accessed on 5 February 2022).
- National Geodetic Survey, 2022: 2019 NOAA NGS Topobathy Lidar DEM: Tampa Bay, FL. Available online: https://www.fisheries.noaa.gov/inport/item/64532 (accessed on 5 February 2022).
- National Geodetic Survey, 2022: 2019 NOAA NGS Topobathy Lidar: U.S. Virgin Islands. Available online: https://www.fisheries.noaa.gov/inport/item/65631 (accessed on 5 February 2022).
- OCM Partners, 2022: 2018 USACE NCMP Topobathy Lidar: Gulf Coast (AL, MS). Available online: https://www.fisheries.noaa.gov/inport/item/55844 (accessed on 5 February 2022).
- Holland, T.K. Application of the Linear Dispersion Relation with Respect to Depth Inversion and Remotely Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2060–2072. [Google Scholar] [CrossRef]
- Lee, Z.; Hu, C.; Arnone, R.; Liu, Z. Impact of sub-pixel variations on ocean color remote sensing products. Opt. Express 2012, 20, 20844–20854. [Google Scholar] [CrossRef]
- National Marine Science Data Center [EB/OL]. Available online: http://mds.nmdis.org.cn/pages/tidalCurrent.html (accessed on 1 February 2022).
- Dubey, A.K.; Jain, V. Comparative Study of Convolution Neural Network’s ReLu and Leaky-ReLu Activation Functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 873–880. [Google Scholar]
- Raharjo, B.; Farida, N.; Subekti, P.; Siburian, R.H.S.; Ardana, P.D.H.; Rahim, R. Optimization Forecasting using Back-Propagation Algorithm. J. Appl. Eng. Sci. 2021, 19, 1083–1089. [Google Scholar] [CrossRef]
- Su, D.; Yang, F.; Ma, Y.; Wang, X.H.; Yang, A.; Qi, C. Propagated Uncertainty Models Arising From Device, Environment, and Target for a Small Laser Spot Airborne LiDAR Bathymetry and its Verification in the South China Sea. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3213–3231. [Google Scholar] [CrossRef]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun Glint Correction of High and Low Spatial Reso-lution Images of Aquatic Scenes: A Review of Methods for Visible and near-Infrared Wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; McCarthy, T. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience Remote Sens. 2019, 57, 271–286. [Google Scholar] [CrossRef]
- Lafon, V.; Froidefond, J.; Lahet, F.; Castaing, P. SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements. Remote Sens. Environ. 2002, 81, 136–148. [Google Scholar] [CrossRef]
- Vahtmäe, E.; Kutser, T. Airborne mapping of shallow water bathymetry in the optically complex waters of the Baltic Sea. J. Appl. Remote Sens. 2016, 10, 025012. [Google Scholar] [CrossRef]
Study Area | Data Level | Date | Acquisition Time (UTC) |
---|---|---|---|
Appalachian Bay | L2A | 20 February 2021 | 16:13:01 |
L2A | 20 February 2021 | 16:13:01 | |
L2A | 20 February 2021 | 16:13:01 | |
L2A | 14 November 2021 | 16:05:31 | |
Virgin Islands | L2A | 5 March 2021 | 14:57:31 |
Cat Island | L2A | 8 March 2021 | 16:31:21 |
Study Area | ATLAS ATL03 (Priori Bathymetric Points) | NOAA NGS Topobathy Lidar (Reference Bathymetric Points) |
---|---|---|
Appalachian Bay | 20210409gt1l | The data acquisition began 22 November 2019 through 20 December 2019 using a RIEGL VQ880-G/RIEGL VQ880-GII sensor [39]. |
20210409gt2l | ||
20210409gt3l | ||
20210311gt1l | ||
20210311gt2l | ||
20210311gt3l | ||
Virgin Islands | 20210317gt1r | The data acquisition began 20 January 2019 through 2 June 2019 using a RIEGL VQ-880-G II sensor [40]. |
20210317gt2r | ||
20210317gt3r | ||
Cat Island | 20200811gt1l | The data acquisition began 30 October 2018 through 18 November 2018 using the Coastal Zone Mapping and Imaging Lidar (CZMIL) system [41]. |
20200811gt2l | ||
20200811gt3l | ||
20211108gt1l | ||
20211108gt2l |
Window Sizes | RMSE (Appalachian Bay) | RMSE (Virgin Islands) | RMSE (Cat Island) |
---|---|---|---|
3 × 3 pixels | 1.37 m | 2.03 m | 0.56 m |
4 × 4 pixels | 1.34 m | 2.01 m | 0.51 m |
5 × 5 pixels | 1.19 m | 1.98 m | 0.35 m |
6 × 6 pixels | 1.10 m | 1.93 m | 0.35 m |
7 × 7 pixels | 1.01 m | 1.80 m | 0.28 m |
8 × 8 pixels | 1.09 m | 1.86 m | 0.31 m |
9 × 9 pixels | 1.28 m | 1.99 m | 0.34 m |
10 × 10 pixels | 1.32 m | 2.31 m | 0.35 m |
DL-NB | Linear Regression | Multilayer Perceptron | Random Forest | |||||
---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | |
Appalachian Bay | 1.01 m | 93% | 2.10 m | 72% | 2.76 m | 67% | 1.74 m | 82% |
Virgin Islands | 1.80 m | 84% | 3.82 m | 63% | 5.43 m | 57% | 3.25 m | 70% |
Cat Island | 0.28 m | 82% | 0.32 m | 84% | 0.31 m | 76% | 0.35 m | 78% |
R2 | RMSE | |
---|---|---|
Trained by Appalachian Bay and validated by Virgin Islands | 53% | 7.21 m |
Trained by Virgin Islands and validated by Appalachian Bay | 61% | 4.52 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Sun, J.; Lai, Z.; Song, Y. Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach. Remote Sens. 2022, 14, 4229. https://doi.org/10.3390/rs14174229
Zhong J, Sun J, Lai Z, Song Y. Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach. Remote Sensing. 2022; 14(17):4229. https://doi.org/10.3390/rs14174229
Chicago/Turabian StyleZhong, Jing, Jie Sun, Zulong Lai, and Yan Song. 2022. "Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach" Remote Sensing 14, no. 17: 4229. https://doi.org/10.3390/rs14174229
APA StyleZhong, J., Sun, J., Lai, Z., & Song, Y. (2022). Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach. Remote Sensing, 14(17), 4229. https://doi.org/10.3390/rs14174229