Evaluation of the Capability of ExoMars-TGO NOMAD Infrared Nadir Channel for Water Ice Clouds Detection on Mars
Abstract
:1. Introduction
2. NOMAD Instrument
3. Methodology
3.1. Data Selection
3.2. Frost and Clouds Index through the 2.7 µm Absorption Band
4. Data Analysis and Results
4.1. Frost Detection
4.2. Water Ice Cloud Detection
4.3. FCI Sensitivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
Abbreviation | Definition |
ACB | Aphelion Cloud Belt |
AOTF | Acousto-Optical Tunable Filter |
AU | Astronomical unit |
BIRA-IASB | Royal Belgian Institute for Space Aeronomy |
CRISM | Compact Reconnaissance Imaging Spectrometer for Mars |
FCI | Frost and Clouds Index |
GCMs | Global climate models |
ICIR | Reversed Ice Cloud Index |
IR | Infrared |
LNO | Limb, nadir, occultation observation |
LS | Solar longitude |
LTST | Local True Solar Time |
MCD | Mars Climate Database v5.3 |
MEX | Mars Express |
MGS | Mars Global Surveyor |
MITRA | Multiple scattering Inverse radiative TRansfer Atmospheric |
MY | Martian Year |
NIR | Near infrared |
NOMAD | Nadir and Occultation for MArs Discovery |
NPH | Northern Polar Hood |
OMEGA | Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité |
PCT | Perihelion cloud trails |
PH | Polar Hood |
R | Reflectance factor |
SNR | Signal-to-noise ratio |
SO | Solar occultation observation |
SPH | Southern Polar Hood |
SPICAM | SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars |
SZA | Solar zenith angle |
T | Surface temperature |
TES | Thermal Emission Spectrometer |
TGO | ExoMars Trace Gas Orbiter |
TIR | Thermal infrared |
UV | Ultraviolet |
UVIS | Ultraviolet-visible observation |
WIC | Water ice-column |
References
- Langevin, Y.; Bibring, J.-P.; Montmessin, F.; Forget, F.; Vincendon, M.; Douté, S.; Poulet, F.; Gondet, B. Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. J. Geophys. Res. 2007, 112, E08S12. [Google Scholar] [CrossRef]
- Montmessin, F.; Gondet, B.; Bibring, J.-P.; Langevin, Y.; Drossart, P.; Forget, F.; Fouchet, T. Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res. Planets 2007, 112, E11S90. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Christensen, P.R. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Smith, M.D.; Kleinböhl, A.; Cantor, B.A.; Murchie, S.L.; Toigo, A.D.; Seelos, K.; Lefèvre, F.; Montmessin, F.; et al. The distribution, composition, and particle properties of Mars mesospheric aerosols: An analysis of CRISM visible/near-IR limb spectra with context from near-coincident MCS and MARCI observations. Icarus 2019, 328, 246–273. [Google Scholar] [CrossRef]
- Wolff, M.J.; Clancy, R.T. Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 2004, 167, 148–165. [Google Scholar] [CrossRef]
- Smith, M.D.; Wolff, M.J.; Clancy, R.T.; Kleinböhl, A.; Murchie, S.L. Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. Planets 2013, 118, 321–334. [Google Scholar] [CrossRef]
- Liuzzi, G.; Villanueva, G.L.; Crismani, M.M.; Smith, M.D.; Mumma, M.J.; Daerden, F.; Aoki, S.; Vandaele, A.C.; Clancy, R.T.; Erwin, J.; et al. Strong variability of Martian water ice clouds during dust storms revealed from ExoMars Trace Gas Orbiter/NOMAD. J. Geophys. Res. Planets 2020, 125, e2019JE006250. [Google Scholar] [CrossRef]
- Wolff, M.J.; Clancy, R.T.; Kahre, M.A.; Haberle, R.M.; Forget, F.; Cantor, B.A.; Malin, M.C. Mapping water ice clouds on Mars with MRO/MARCI. Icarus 2019, 332, 24–49. [Google Scholar] [CrossRef]
- Olsen, K.S.; Forget, F.; Madeleine, J.-B.; Szantai, A.; Audouard, J.; Geminale, A.; Altieri, F.; Bellucci, G.; Oliva, F.; Montabone, L.; et al. Retrieval of the water ice column and physical properties of water-ice clouds in the Martian atmosphere using the OMEGA imaging spectrometer. Icarus 2021, 353, 113229. [Google Scholar] [CrossRef]
- Clancy, R.; Grossman, A.; Wolff, M.; James, P.; Rudy, D.; Billawala, Y.; Sandor, B.; Lee, S.; Muhleman, D. Water vapor saturation at low altitudes around Mars aphelion: A key to mars climate? Icarus 1996, 122, 36–62. [Google Scholar] [CrossRef]
- Smith, M.D. Spacecraft observations of the Martian atmosphere. Annu. Rev. Earth Planet. Sci. 2008, 36, 191–219. [Google Scholar] [CrossRef]
- Smith, M.D. THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 2009, 202, 444–452. [Google Scholar] [CrossRef]
- Benson, J.L.; Kass, D.M.; Kleinböhl, A.; McCleese, D.J.; Schofield, J.T.; Taylor, F.W. Mars’ south polar hood as observed by the Mars Climate Sounder. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef]
- Benson, J.L.; Kass, D.M.; Kleinböhl, A. Mars’ north polar hood as observed by the Mars Climate Sounder. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Madeleine, J.B.; Forget, F.; Spiga, A.; Wolff, M.J.; Montmessin, F.; Vincendon, M.; Jouglet, D.; Gondet, B.; Bibring, J.P.; Langevin, Y.; et al. Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. J. Geophys. Res. 2012, 117, E00J07. [Google Scholar] [CrossRef]
- Willame, Y.; Vandaele, A.; Depiesse, C.; Lefèvre, F.; Letocart, V.; Gillotay, D.; Montmessin, F. Retrieving cloud, dust and ozone abundances in the martian atmosphere using SPICAM/UV nadir spectra. Planet. Space Sci. 2017, 142, 9–25. [Google Scholar] [CrossRef]
- Szantai, A.; Audouard, J.; Forget, F.; Olsen, K.S.; Gondet, B.; Millour, E.; Madeleine, J.B.; Pottier, A.; Langevin, Y.; Bibring, J.P. Martian cloud climatology and life cycle extracted from Mars Express OMEGA spectral images. Icarus 2021, 353, 114101. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Heavens, N.G.; Newman, C.E.; Richardson, M.I.; Yang, C.; Li, J.; Cui, J. Earth-like thermal and dynamical coupling processes in the Martian climate system. Earth-Sci. Rev. 2022, 229, 104023. [Google Scholar] [CrossRef]
- Benson, J.L.; Boney, B.P.; James, P.B.; Shan, K.J.; Cantor, B.A.; Caplinger, M.A. The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of Mars: Mars orbiter camera observations. Icarus 2003, 165, 34–52. [Google Scholar] [CrossRef]
- Benson, J.L.; James, P.B.; Cantor, B.A.; Remigio, R. Interannual variability of water ice clouds over major Martian volcanoes observed by MOC. Icarus 2006, 184, 365–371. [Google Scholar] [CrossRef]
- Hernández-Bernal, J.; Sánchez-Lavega, A.; del Río-Gaztelu Urrutia, T.; Ravanis, E.; Cardesín-Moinelo, A.; Connour, K.; Tirsch, D.; Ordóñez-Etxeberria, I.; Gondet, B.; Wood, S.; et al. An extremely elongated cloud over Arsia Mons volcano on Mars: I. Life cycle. J. Geophys. Res. Planets 2021, 126, e2020JE006517. [Google Scholar] [CrossRef]
- Forget, F.; Pierrehumbert, R.T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 1997, 278, 1273–1276. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Talagrand, O. CO2 snowfall on Mars: Simulation with a general circulation model. Icarus 1998, 131, 302–316. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Richardson, M.I.; Wilson, R.J.; Rodin, A.V. Water ice clouds in the Martian atmosphere: General circulation model experiments with a simple cloud scheme. J. Geophys. Res. Planets 2002, 107. [Google Scholar] [CrossRef]
- Montmessin, F.; Forget, F.; Rannou, P.; Cabane, M.; Haberle, R.M. Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res. Planets 2004, 109, E10004. [Google Scholar] [CrossRef]
- Navarro, T.; Madeleine, J.-B.; Forget, F.; Spiga, A.; Millour, E.; Montmessin, F.; Määttänen, A. Global Climate Modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. Planets 2014, 119, 1479–1495. [Google Scholar] [CrossRef]
- Daerden, F.; Whiteway, J.A.; Davy, R.; Verhoeven, C.; Komguem, L.; Dickin-son, C.; Taylor, P.A.; Larsen, N. Simulating observed boundary layer clouds on Mars. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Daerden, F.; Neary, L.; Viscardy, S.; Garcia, M.A.; Clancy, R.; Smith, M.; Encrenaz, T.; Fedorova, A. Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus 2019, 326, 197–224. [Google Scholar] [CrossRef]
- Aoki, S.; Vandaele, A.C.; Daerden, F.; Villanueva, G.L.; Liuzzi, G.; Thomas, I.R.; Erwin, J.T.; Trompet, L.; Robert, S.; Neary, L.; et al. Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. J. Geophys. Res. Planets 2019, 124, 3482–3497. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Korablev, O.; Daerden, F.; Aoki, S.; Thomas, I.R.; Altieri, F.; López-Valverde, M.; Villanueva, G.; Liuzzi, G.; Smith, M.D.; et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 2019, 568, 521–525. [Google Scholar] [CrossRef]
- Liuzzi, G.; Villanueva, G.L.; Mumma, M.J.; Smith, M.D.; Daerden, F.; Ristic, B.; Thomas, I.; Vandaele, A.C.; Patel, M.R.; Lopez-Moreno, J.-J.; et al. Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus 2019, 321, 671–690. [Google Scholar] [CrossRef]
- Korablev, O.; Olsen, K.S.; Trokhimovskiy, A.; Lefèvre, F.; Montmessin, F.; Fedorova, A.A.; Toplis, M.J.; Alday, J.; Belyaev, D.A.; Patrakeev, A.; et al. Transient HCl in the atmosphere of Mars. Sci. Adv. 2021, 7, eabe4386. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Daerden, F.; Neary, L.; Khayat, A.S.; Holmes, J.A.; Patel, M.R.; Villanueva, G.; Liuzzi, G.; Thomas, I.R.; Ristic, B.; et al. The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. Icarus 2021, 362, 114404. [Google Scholar] [CrossRef]
- Neefs, E.; Vandaele, A.C.; Drummond, R.; Thomas, I.R.; Berkenbosch, S.; Clairquin, R.; Delanoye, S.; Ristic, B.; Maes, J.; Bonnewijn, S.; et al. NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: Part1—Design, manufacturing and testing of the infrared channels. Appl. Opt. 2015, 54, 8494–8520. [Google Scholar] [CrossRef] [PubMed]
- Vandaele, A.; Neefs, E.; Drummond, R.; Thomas, I.; Daerden, F.; Lopez-Moreno, J.-J.; Rodriguez, J.; Patel, M.; Bellucci, G.; Allen, M.; et al. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 2015, 119, 233–249. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Willame, Y.; Depiesse, C.; Thomas, I.R.; Robert, S.; Bolsée, D.; Patel, M.R.; Mason, J.P.; Leese, M.; Lesschaeve, S.; et al. Optical and radiometric models of the nomad instrument part I: The UVIS channel. Opt. Express 2015, 23, 30028–30042. [Google Scholar] [CrossRef]
- Thomas, I.R.; Vandaele, A.; Robert, S.; Neefs, E.; Drummond, R.; Daerden, F.; Delanoye, S.; Ristic, B.; Berkenbosch, S.; Clairquin, R. Optical and radiometric models of the NOMAD instrument part II: The infrared channels-SO and LNO. Opt. Express 2016, 24, 3790–3805. [Google Scholar] [CrossRef]
- Patel, M.R.; Antoine, P.; Mason, J.P.; Leese, M.R.; Hathi, B.; Stevens, A.H.; Dawson, D.; Gow, J.P.D.; Ringrose, T.J.; Holmes, J.A.; et al. NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Appl. Opt. 2017, 56, 2771–2782. [Google Scholar] [CrossRef]
- Thomas, I.R.; Shohei, A.; Trompet, L.; Robert, S.; Depiesse, C.; Willame, Y.; Cruz-Mermy, G.; Schmidt, F.; Erwin, J.T.; Vandaele, A.C.; et al. Calibration of NOMAD on ESA’s ExoMars Trace Gas Orbiter: Part 2—The Limb, Nadir and Occultation (LNO) channel. Planet. Space Sci. 2022, 218, 105410. [Google Scholar] [CrossRef]
- Cruz Mermy, G.; Schmidt, F.; Thomas, I.R.; Daerden, F.; Ristic, B.; Patel, M.R.; Lopez-Moreno, J.J.; Bellucci, G.; Vandaele, A.C. Calibration of NOMAD on ExoMars Trace Gas Orbiter: Part 3—LNO validation and instrument stability. Planet. Space Sci. 2022, 218, 105399. [Google Scholar] [CrossRef]
- Oliva, F.; D’Aversa, E.; Bellucci, G.; Carrozzo, F.G.; Ruiz Lozano, L.; Altieri, F.; Thomas, I.R.; Karatekin, O.; Cruz Mermy, G.; Schmidt, F.; et al. Martian CO2 ice observation at high spectral resolution with ExoMars/TGO NOMAD. J. Geophys. Res. Planets 2022, 127, e2021JE007083. [Google Scholar] [CrossRef]
- Adriani, A.; Moriconi, M.; D’Aversa, E.; Oliva, F.; Filacchione, G. Faint luminescent ring over Saturn’s polar hexagon. Astrophys. J. Lett. 2015, 808, L16. [Google Scholar] [CrossRef]
- Sindoni, G.; Grassi, D.; Adriani, A.; Mura, A.; Moriconi, M.; Dinelli, B.; Filac-chione, G.; Tosi, F.; Piccioni, G.; Migliorini, A.; et al. Characterization of the white ovals on Jupiter’s southern hemisphere using the first data by the JUNO/JIRAM instrument: Jupiter ovals as seen by JIRAM/JUNO. Geophys. Res. Lett. 2017, 44, 4660–4668. [Google Scholar] [CrossRef]
- Oliva, F.; Adriani, A.; Moriconi, M.; Liberti, G.L.; D’Aversa, E.; Filacchione, G. Clouds and hazes vertical structure of a Saturn’s giant vortex from Cassini/VIMS-V-v data analysis. Icarus 2016, 278, 215–237. [Google Scholar] [CrossRef]
- Oliva, F.; Geminale, A.; D’Aversa, E.; Altieri, F.; Bellucci, G.; Carrozzo, F.; Sindoni, G.; Grassi, D. Properties of a Martian local dust storm in Atlantis chaos from OMEGA/MEX data. Icarus 2018, 300, 1–11. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations? Description and examples of use. Atmos. Chem. Phys. Discuss. 2005, 5, 1319–1381. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. Planets 2001, 106, 23823–23872. [Google Scholar] [CrossRef]
- Bibring, J.P.; Soufflot, A.; Berthé, M.; Langevin, Y.; Gondet, B.; Drossart, P.; Buoyé, M.; Combes, M.; Puget, P.; Semery, A.; et al. OMEGA: Observatoire Pour La Minéralogie, l’Eau, Les Glaces et l’Activité. In Mars Express: The Scientific Payload; Wilson, A., Chicarro, A., Eds.; European Space Agency: Paris, France, 2004; Volume 1240, pp. 37–49. [Google Scholar]
- Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Viviano, C.E.; Seelos, F.P.; Murchie, S.L.; Kahn, E.G.; Seelos, K.D.; Taylor, H.W.; Taylor, K.; Ehlmann, B.L.; Wiseman, S.M.; Mustard, J.F.; et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. Planets 2014, 119, 1403–1431. [Google Scholar] [CrossRef]
- Riu, L.; Poulet, F.; Carter, J.; Bibring, J.-P.; Gondet, B.; Vincendon, M. The M3 project: 1—A global hyperspectral image-cube of the Martian surface. Icarus 2019, 319, 281–292. [Google Scholar] [CrossRef]
- Riu, L.; Poulet, F.; Bibring, J.-P.; Gondet, B. The M3 project: 2—Global distributions of mafic mineral abundances on Mars. Icarus 2019, 322, 31–53. [Google Scholar] [CrossRef]
- Christensen, P.; Bandfield, J.L.; Hamilton, V.E.; Howard, D.A.; Lane, M.D.; Piatek, J.L.; Ruff, S.; Stefanov, W.L. A thermal emission spectral library of rock-forming minerals. J. Geophys. Res. Planets 2000, 105, 9735–9739. [Google Scholar] [CrossRef]
- Poulet, F.; Mangold, N.; Platevoet, B.; Bardintzeff, J.M.; Sautter, V.; Mustard, J.F.; Bibring, J.P.; Pinet, P.; Langevin, Y.; Gondet, B.; et al. Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus 2009, 201, 84–101. [Google Scholar] [CrossRef]
- Piqueux, S.; Byrne, S.; Richardson, M.I. Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. J. Geophys. Res. 2003, 108, 5084. [Google Scholar] [CrossRef]
- Schmidt, F.; Douté, S.; Schmitt, B.; Vincendon, M.; Bibring, J.-P.; Langevin, Y.; OMEGA Team. Albedo control of Seasonal South Polar Cap recession on Mars. Icarus 2009, 200, 374–394. [Google Scholar] [CrossRef]
- Schmidt, F.; Schmitt, B.; Douté, S.; Forget, F.; Jian, J.J.; Martin, P.; Langevin, Y.; Bibring, J.P.; OMEGA Team. Sublimation of the Martian CO2 Seasonal South Polar Cap. Planet. Space Sci. 2010, 58, 1129–1138. [Google Scholar] [CrossRef]
- Cull, S.; Arvidson, R.E.; Mellon, M.; Wiseman, S.; Clark, R.; Titus, T.; Morris, R.V.; McGuire, P. Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations. J. Geophys. Res. 2010, 115, E00D16. [Google Scholar] [CrossRef]
- Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus 2013, 225, 881–897. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Christensen, P.R.; Smith, M.D. Spectral data set factor analysis and end-member recovery: Application to Martian atmospheric particulates. J. Geophys. Res. 2000, 105, 9573–9588. [Google Scholar] [CrossRef]
- Bandfield, J.L. Global mineral distributions on Mars. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Rogers, D.; Christensen, P.R. Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere. J. Geophys. Res. 2003, 108, 5030. [Google Scholar] [CrossRef]
- Rogers, A.D.; Bandfield, J.L.; Christensen, P.R. Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. J. Geophys. Res. 2007, 112, E02004. [Google Scholar] [CrossRef]
- Piqueux, S.; Kleinböhl, A.; Hayne, P.O.; Heavens, N.G.; Kass, D.M.; McCleese, D.J.; Schofield, J.T.; Shirley, J.H. Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars. J. Geophys. Res. Planets 2016, 121, 1174–1189. [Google Scholar] [CrossRef]
- Carrozzo, F.G.; Bellucci, G.; Altieri, F.; D’aversa, E.; Bibring, J.P. Mapping of water frost and ice at low latitudes on Mars. Icarus 2009, 203, 406–420. [Google Scholar] [CrossRef]
- Millour, E.; Forget, F.; Spiga, A. The Mars Climate Database, Version 5.3; ESAC: Madrid, Spain, 2018. [Google Scholar]
- Wilson, R.J.; Neumann, G.A.; Smith, M.D. Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett. 2007, 34, L02710. [Google Scholar] [CrossRef]
- Guha, B.K.; Jagabandhu, P.; Zhaopeng, W. Observation of aphelion cloud belt over Martian tropics, its evolution, and associated dust distribution from MCS data. Adv. Space Res. 2021, 67, 1392–1411. [Google Scholar] [CrossRef]
- Liu, J.; Richardson, M.I.; Wilson, R.J. An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared. J. Geophys. Res. 2003, 108, 5089. [Google Scholar] [CrossRef]
- Mateshvili, N.; Fussen, D.; Vanhellemont, F.; Bingen, C.; Dodion, J.; Montmessin, F.; Perrier, S.; Dimarellis, E.; Bertaux, J.-L. Martian ice cloud distribution obtained from SPICAM nadir UV measurements. J. Geophys. Res. 2007, 112, E07004. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Smith, M.D. Seasonal Variation in Martian Water Ice Cloud Particle Size. J. Geophys. Res. Planets 2019, 124, 636–643. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Whitney, B.A.; Cantor, B.A.; Smith, M.D. Mars equatorial mesospheric clouds: Global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. J. Geophys. Res. Planets 2007, 112, E04004. [Google Scholar] [CrossRef]
- Clancy, T.R.; Wolff, M.J.; Heavens, N.G.; James, P.B.; Lee, S.W.; Sandor, B.J.; Cantor, B.A.; Malin, M.C.; Tyler, D.; Spiga, A. Mars perihelion cloud trails as revealed by MARCI: Mesoscale topographically focused updrafts and gravity wave forcing of high altitude clouds. Icarus 2021, 362, 114411. [Google Scholar] [CrossRef]
MY34: LS = [150–360°] | MY35: LS = [0–360°] | Total | |
---|---|---|---|
Order 167 | 682 | 371 | 1053 |
Order 168 | 504 | 1144 | 1648 |
Order 169 | 694 | 403 | 1097 |
TOTAL | 1880 | 1918 | 3798 |
Region of Interest | LS (°) | Latitude (°) | LTST | T (K) |
---|---|---|---|---|
A | 301 (MY34) | −27 | 16:12 | 282 |
B | 51 | 11 to 29 | 16:00 | 254 |
C | 133 | 16 to 21 | 13:18 | 236 |
D1 | 117 | −5 | 08:25 | 220 |
D2 | 129 | −7 | 15:40 | 260 |
E1 | 225 | 17 | 15:55 | 251 |
E2 | 267 | 19 | 10:43 | 253 |
F1 | 205 | −25 | 8:20 | 240 |
F2 | 218 | −23 | 15:56 | 279 |
F3 | 255 | −24 to −30 | 15:57 | 286 |
G | 347 | −23 to −36 | 15:38 | 265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz Lozano, L.; Karatekin, Ö.; Dehant, V.; Bellucci, G.; Oliva, F.; D’Aversa, E.; Carrozzo, F.G.; Altieri, F.; Thomas, I.R.; Willame, Y.; et al. Evaluation of the Capability of ExoMars-TGO NOMAD Infrared Nadir Channel for Water Ice Clouds Detection on Mars. Remote Sens. 2022, 14, 4143. https://doi.org/10.3390/rs14174143
Ruiz Lozano L, Karatekin Ö, Dehant V, Bellucci G, Oliva F, D’Aversa E, Carrozzo FG, Altieri F, Thomas IR, Willame Y, et al. Evaluation of the Capability of ExoMars-TGO NOMAD Infrared Nadir Channel for Water Ice Clouds Detection on Mars. Remote Sensing. 2022; 14(17):4143. https://doi.org/10.3390/rs14174143
Chicago/Turabian StyleRuiz Lozano, Luca, Özgür Karatekin, Véronique Dehant, Giancarlo Bellucci, Fabrizio Oliva, Emiliano D’Aversa, Filippo Giacomo Carrozzo, Francesca Altieri, Ian R. Thomas, Yannick Willame, and et al. 2022. "Evaluation of the Capability of ExoMars-TGO NOMAD Infrared Nadir Channel for Water Ice Clouds Detection on Mars" Remote Sensing 14, no. 17: 4143. https://doi.org/10.3390/rs14174143
APA StyleRuiz Lozano, L., Karatekin, Ö., Dehant, V., Bellucci, G., Oliva, F., D’Aversa, E., Carrozzo, F. G., Altieri, F., Thomas, I. R., Willame, Y., Robert, S., Vandaele, A. C., Daerden, F., Ristic, B., Patel, M. R., & López Moreno, J. J. (2022). Evaluation of the Capability of ExoMars-TGO NOMAD Infrared Nadir Channel for Water Ice Clouds Detection on Mars. Remote Sensing, 14(17), 4143. https://doi.org/10.3390/rs14174143