Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data
Abstract
:1. Introduction
2. Study Area, SAR Datasets, and Leveling Data
2.1. Study Area
2.2. SAR Datasets and Leveling Data
3. MT-InSAR Analysis with Sentinel-1 A/B
3.1. The Processing Framework of MT-InSAR Analysis
3.2. The Principle of MT-InSAR Analysis
3.3. The Results of MT-InSAR Analysis
4. Validation with Leveling Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luo, Q.; Perissin, D.; Zhang, Y.; Jia, Y. L- and X-Band Multi-Temporal InSAR Analysis of Tianjin Subsidence. Remote Sens. 2014, 6, 7933. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Chen, F.; Guo, H.; Ishwaran, N.; Liu, J.; Wang, X.; Zhou, W.; Tang, P. Understanding the relationship between the water crisis and sustainability of the Angkor World Heritage site. Remote Sens. Environ. 2019, 232, 111293. [Google Scholar] [CrossRef]
- Chen, F.; Guo, H.; Ma, P.; Lin, H.; Wang, C.; Ishwaran, N.; Hang, P. Radar interferometry offers new insights into threats to the Angkor site. Sci. Adv. 2017, 3, e1601284. [Google Scholar] [CrossRef] [PubMed]
- Duro, J.; Inglada, J.; Closa, J.; Adam, N.; Arnaud, A. High resolution differential interferometry using time series of ERS and ENVISAT SAR data. In Proceedings of the FRINGE 2003 Workshop, Frascati, Italy, 1–5 December 2003; p. 72. [Google Scholar]
- Van der Kooij, M. Coherent target analysis. In Proceedings of the 3rd International Workshop on ERS SAR Interferometry (FRINGE 2003), Frascati, Italy, 1–5 December 2003; pp. 2–5. [Google Scholar]
- Van Lijen, F.; Ketelaar, V.; Marinkovic, P.; Hanssen, R. Persistent scatterer interferometry: Precision, reliability and integration. In Proceedings of the ISPRS Workshop, High-Resolution Earth Imaging Geospatial Inf, Hannover, Germany, 17–20 May 2005; pp. 17–20. [Google Scholar]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the 2003 IEEE Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 4362–4364. [Google Scholar]
- Adam, N.; Kampes, B.; Eineder, M. Development of a Scientific Permanent Scatterer System: Modifications for Mixed ERS/ENVISAT Time Series. In Proceedings of the Envisat Symposium 2004, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Manunta, M.; Manzo, M.; Pepe, A.; Sansosti, E. A Two-Scale Differential SAR Interferometry Approach for Investigating Earth Surface Deformations. In Proceedings of the 2003 IEEE Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 1184–1186. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Bateson, L.; Novellino, A. 2019 Glasgow Geothermal Energy Research Field Site: Ground Motion Survey Report. Nottingham, UK, British Geological Survey, 35pp. (OR/18/054). Available online: https://nora.nerc.ac.uk/id/eprint/524555/ (accessed on 30 July 2019).
- Ferretti, A.; Bianchi, M.; Prati, C.; Rocca, F. Higher-order permanent scatterers analysis. Eurasip J. Appl. Signal Process. 2005, 20, 3231–3242. [Google Scholar] [CrossRef]
- Fornaro, G.; Serafino, F.; Reale, D. 4-D SAR Imaging: The Case Study of Rome. IEEE Geosci. Remote Sens. Lett. 2020, 7, 236–240. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Y.; Zhang, Y.; Parcharidis, I.; Ma, P.; Xiao, R.; Xu, J.; Zhou, W.; Tang, P.; Foumelis, M. Surface motion and structural instability monitoring of ming dynasty city walls by two-step tomo-psinsar approach in Nanjing city, China. Remote Sens. 2010, 9, 371. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.X.; Zeisl, B.; Pollefeys, M. 2016. Fusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring. IEEE Trans. Geosci. Remote Sens. 2016, 55, 14–26. [Google Scholar] [CrossRef]
- Zhu, X.X.; Shahzad, M. Facade Reconstruction Using Multiview Spaceborne TomoSAR Point Clouds. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3541–3552. [Google Scholar] [CrossRef]
- Baade, J.; Schmullius, C.C. Interferometric microrelief sensing with TerraSAR-X—First results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 965–970. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, G.; Perissin, D. Monitoring of Subsidence along Jingjin Inter-City Railway with High-Resolution TerraSAR-X MT-InSAR Analysis. Remote Sens. 2017, 9, 717. [Google Scholar] [CrossRef]
- Liu, G.X.; Jia, H.G.; Zhang, R.; Zhang, H.X.; Jia, H.L.; Yu, B.; Sang, M.Z. Exploration of Subsidence Estimation by Persistent Scatterer InSAR on Time Series of High Resolution TerraSAR-X Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 159–170. [Google Scholar] [CrossRef]
- Perissin, D.; Zhiying, W.; Hui, L. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Fornaro, G.; Reale, D.; Verde, S. Bridge Thermal Dilation Monitoring with Millimeter Sensitivity via Multidimensional SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 677–681. [Google Scholar] [CrossRef]
- Qin, X.; Liao, M.; Zhang, L.; Yang, M. Structural health and stability assessment of high-speed railways via thermal dilation mapping with time-series InSAR analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2999–3010. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M.; Cuevas, M.; Crippa, B. The Thermal Expansion Component of Persistent Scatterer Interferometry Observations. IEEE Geosci. Remote Sens. Lett. 2011, 8, 864–868. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-Gonzalez, M.; Devanthery, N.; Luzi, G.; Crippa, B. Measuring thermal expansion using X-band persistent scatterer interferometry. ISPRS J. Photogramm. Remote Sens. 2015, 100, 84–91. [Google Scholar] [CrossRef]
- Upadhyay, P.; Czerkawski, M.; Davison, C.; Cardona, J.; Macdonald, M.; Andonovic, I.; Michie, C.; Atkinson, R.; Papadopoulou, N.; Nikas, K.; et al. A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1 and Sentinel-2 Analysis Ready Data. Remote Sens. 2022, 14, 1120. [Google Scholar] [CrossRef]
- Boni, R.; Bordoni, M.; Vivaldi, V.; Troisi, C.; Tararbra, M.; Lanteri, L.; Zucca, F.; Meisina, C. Assessment of the Sentinel-1 based ground motion data feasibility for large scale landslide monitoring. Landslides 2020, 17, 2287–2299. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rollins, C. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Grandin, R.; Vallée, M.; Lacassin, R. Rupture process of the Mw 5.8 Pawnee, Oklahoma, earthquake from Sentinel-1 InSAR and seismological data. Seismol. Res. Lett. 2017, 88, 994–1004. [Google Scholar] [CrossRef]
- Solari, L.; Barra, A.; Herrera, G.; Bianchini, S.; Monserrat, O.; Béjar-Pizarro, M.; Crosetto, M.; Sarro, R.; Moretti, S. Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomat. Nat. Hazards Risk 2018, 9, 152–174. [Google Scholar] [CrossRef]
- Li, Y.S.; Jiang, W.L.; Zhang, J.F. A time series processing chain for geological disasters based on a GPU-assisted sentinel-1 InSAR processor. Nat. Hazards 2022, 111, 803–815. [Google Scholar] [CrossRef]
- Choe, B.H.; Blais-Stevens, A.; Samsonov, S.; Dudley, J. Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada. Remote Sens. 2021, 13, 3999. [Google Scholar] [CrossRef]
- Braun, A. Retrieval of digital elevation models from Sentinel-1 radar data-open applications, techniques, and limitations. Open Geosci. 2021, 13, 532–569. [Google Scholar] [CrossRef]
- Morishita, Y. Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS. Prog. Earth Planet. Sci. 2021, 8, 6. [Google Scholar] [CrossRef]
- Julzarika, A. Detection of vertical deformation in Jakarta-Bandung high-speed train route using Xsar and sentinel. Geod. Cartography. 2019, 45, 169–176. [Google Scholar] [CrossRef]
- Ardha, M.; Suhadha, A.G.; Julzarika, A.; Yulianto, F.; Yudhatama, D.; Darwista, R.Z. Utilization of Sentinel-1 Satellite Imagery Data to Support Land Subsidence Analysis in DKI Jakarta, Indonesia. J. Degrad. Min. Lands Manag. 2020, 8, 2587–2593. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Ge, L.; Ng, A.H.-M.; Li, X.; Abidin, H.Z.; Gumilar, I. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sens. Environ. 2014, 154, 46–60. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Wang, T. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In Proceedings of the ISRSE, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- Abidin, H.Z.; Andreas, H.; Gamal, M.; Darmawan, D. Land subsidence characteristics of Bandung Basin (Indonesia) between 2000 and 2005 as estimated from GPS surveys. In Proceedings of the XXIII International FIG Congress, Munich, Germany, 8–13 October 2006; pp. 8–13. [Google Scholar]
- Luo, Q.; Perissin, D.; Lin, H.; Zhang, Y.; Wang, W. Subsidence monitoring of Tianjin suburbs by TerraSAR-X persistent scatterers interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1642–1650. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Rucci, A.; Ferretti, A.; Guarnieri, A.M.; Rocca, F. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 2012, 120, 156–163. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Gumilar, I.; Abidin, H.Z.; Hutasoit, L.M.; Hakim, D.M.; Sidiq, T.P.; Andreas, H. Land Subsidence in Bandung Basin and its Possible Caused Factors. Procedia Earth Planet. Sci. 2015, 12, 47–62. [Google Scholar] [CrossRef]
- Danklmayer, A.; Doring, B.J.; Schwerdt, M.; Chandra, M. Assessment of Atmospheric Propagation Effects in SAR Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3507–3518. [Google Scholar] [CrossRef]
- Albino, F.; Biggs, J.; Syahbana, D.K. Dyke intrusion between neighbouring arc volcanoes responsible for 2017 pre-eruptive seismic swarm at Agung. Nat. Commun. 2019, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhu, Q.; Yang, X.; Li, L. Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 54–68. [Google Scholar] [CrossRef]
Satellite | Launch Date | Wavelength (cm) | Resolution (m) | Breadth |
---|---|---|---|---|
Sentinel-1A | May 2014 | 5.6 | 5 × 20 | 250 km |
Sentinel-1B | April 2016 | 5.6 | 5 × 20 | 250 km |
ID | Date (Day Month Year) | Perpendicular Baseline (m) | Temporal Baseline (Days) |
---|---|---|---|
1 | 12 October 2014 | −42 | −732 |
2 | 24 October 2014 | 82 | −720 |
3 | 17 November 2014 | 47 | −696 |
4 | 11 December 2014 | −59 | −672 |
5 | 04 January 2015 | 119 | −648 |
6 | 28 January 2015 | 10 | −624 |
7 | 21 February 2015 | 58 | −600 |
8 | 17 March 2015 | 52 | −576 |
9 | 10 April 2015 | −116 | −552 |
10 | 04 May 2015 | 99 | −528 |
11 | 15 July 2015 | −57 | −456 |
12 | 08 August 2015 | 11 | −432 |
13 | 01 September 2015 | −4 | −408 |
14 | 25 September 2015 | −5 | −384 |
15 | 19 October 2015 | 27 | −360 |
16 | 12 November 2015 | −41 | −336 |
17 | 06 December 2015 | 47 | −312 |
18 | 30 December 2015 | 48 | −288 |
19 | 23 January 2016 | −1 | −264 |
20 | 16 February 2016 | −7 | −240 |
21 | 11 March 2016 | −13 | −216 |
22 | 04 April 2016 | 58 | −192 |
23 | 28 April 2016 | −13 | −168 |
24 | 22 May 2016 | 2 | −144 |
25 | 15 June 2016 | 24 | −120 |
26 | 09 July 2016 | 12 | −96 |
27 | 02 August 2016 | 46 | −72 |
28 | 26 August 2016 | 14 | −48 |
29 | 19 September 2016 | 7 | −24 |
30 * | 13 October 2016 | 0 | 0 |
31 | 06 November 2016 | 44 | 24 |
32 | 30 November 2016 | 21 | 48 |
33 | 24 December 2016 | 7 | 72 |
34 | 17 January 2017 | −17 | 96 |
35 | 22 February 2017 | −15 | 132 |
36 | 06 March 2017 | −81 | 144 |
37 | 18 March 2017 | −15 | 156 |
38 | 30 March 2017 | −3 | 168 |
39 | 11 April 2017 | 56 | 180 |
40 | 23 April 2017 | 41 | 192 |
41 | 05 May 2017 | 81 | 204 |
42 | 17 May 2017 | 42 | 216 |
43 | 29 May 2017 | −43 | 228 |
44 | 10 June 2017 | 42 | 240 |
45 | 22 June 2017 | 44 | 252 |
46 | 04 July 2017 | −43 | 264 |
47 | 09 August 2017 | 11 | 300 |
48 | 21 August 2017 | −23 | 312 |
49 | 02 September 2017 | 14 | 324 |
50 | 14 September 2017 | 38 | 336 |
51 | 26 September 2017 | 19 | 348 |
52 | 08 October 2017 | 18 | 360 |
53 | 20 October 2017 | −3 | 372 |
54 | 01 November 2017 | 22 | 384 |
55 | 13 November 2017 | −20 | 396 |
56 | 25 November 2017 | 31 | 408 |
57 | 07 December 2017 | −67 | 420 |
ID | Leveling | PS | PS Temporal Coherence | Dispersion of Displacement | PS-Lev | RMSE |
---|---|---|---|---|---|---|
1 | 0 | 5.74 | 0.79 | 3.03 | −5.74 | 10.31 |
2 | 0 | 3.25 | 0.74 | 3.43 | −3.25 | |
3 | −6.76 | −18.36 | 0.85 | 2.52 | 11.60 | |
5 | −99.04 | −83.46 | 0.75 | 3.35 | −15.58 | |
6 | −104.89 | −89.83 | 0.71 | 3.66 | −15.06 | |
7 | −125.30 | −118.9 | 0.70 | 3.73 | −6.39 | |
8 | −97.86 | −85.95 | 0.72 | 3.58 | −11.91 | |
9 | −83.78 | −83.18 | 0.76 | 3.27 | −0.60 | |
10 | −90.44 | −103.26 | 0.79 | 3.03 | 12.82 | |
11 | −104.18 | −111.57 | 0.82 | 2.78 | 7.39 | |
12 | −121.23 | −106.17 | 0.75 | 3.35 | −15.06 | |
15 | 0 | −0.49 | 0.72 | 3.58 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Li, J.; Zhang, Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sens. 2022, 14, 4138. https://doi.org/10.3390/rs14174138
Luo Q, Li J, Zhang Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sensing. 2022; 14(17):4138. https://doi.org/10.3390/rs14174138
Chicago/Turabian StyleLuo, Qingli, Jian Li, and Yuanzhi Zhang. 2022. "Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data" Remote Sensing 14, no. 17: 4138. https://doi.org/10.3390/rs14174138
APA StyleLuo, Q., Li, J., & Zhang, Y. (2022). Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sensing, 14(17), 4138. https://doi.org/10.3390/rs14174138