Interpreting Sentinel-1 SAR Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and Physically-Based SnowModel
Abstract
:1. Introduction and Background
1.1. Snowpack Seasonal Transitions: Melt/Freeze Cycles, Warming, and Ripening
1.2. NASA SnowEx Campaign
1.3. Synthetic Aperture Radar and the Snowpack
1.3.1. Diurnal Changes in SAR Return
1.4. SnowModel
2. Materials and Methods
2.1. Study Area: Grand Mesa, Colorado, USA
2.2. Data
2.2.1. Meteorological and Streamflow Data
2.2.2. Snow Pit Measurements
2.2.3. European Space Agency Sentinel-1 SAR Imagery
2.2.4. Copernicus Digital Elevation Model
2.2.5. Landcover
2.3. Methods
2.3.1. Snow Pit Measurement Comparison and Integration
2.3.2. Sentinel-1 Diurnal Wet Snow
2.3.3. SnowModel
3. Results
3.1. Field Measurements
3.1.1. Environmental Variables
3.1.2. Snow Pit Measurements
3.2. SnowModel
3.3. Sentinel-1
3.3.1. Land Cover Backscatter Values
3.3.2. Sentinel-1 Diurnal Wet Snow
3.4. Integration
3.4.1. Snowpack Phases and S1 Backscatter
3.4.2. S1 and SnowModel Diurnal Snow Conditions Comparison
4. Discussion
4.1. Field Measurements
4.1.1. Environmental Variables
4.1.2. Snow Pit Measurements
4.2. SnowModel
4.3. Sentinel-1
4.3.1. Land Cover Backscatter Values
4.3.2. S1 Diurnal Wet Snow
4.4. Integration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Kattelmann, R.; Dozier, J. Observations of snowpack ripening in the Sierra Nevada, California, USA. J. Glaciol. 1999, 45, 409–416. [Google Scholar] [CrossRef]
- Bryant, A.C.; Painter, T.H.; Deems, J.S.; Bender, S.M. Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin. Geophys. Res. Lett. 2013, 40, 3945–3949. [Google Scholar] [CrossRef]
- Penn, C.A.; Clow, D.W.; Sexstone, G.A.; Murphy, S.F. Changes in Climate and Land Cover Affect Seasonal Streamflow Forecasts in the Rio Grande Headwaters. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 882–902. [Google Scholar] [CrossRef]
- Varade, D.; Manickam, S.; Singh, G. Remote Sensing for Snowpack Monitoring and Its Implications. Geogr. Inf. Sci. Land Resour. Manag. 2021, 99–117. [Google Scholar] [CrossRef]
- Avanzi, F.; De Michele, C.; Morin, S.; Carmagnola, C.M.; Ghezzi, A.; Lejeune, Y. Model complexity and data requirements in snow hydrology: Seeking a balance in practical applications. Hydrol. Process. 2016, 30, 2106–2118. [Google Scholar] [CrossRef]
- Engel, M.; Notarnicola, C.; Endrizzi, S.; Bertoldi, G. Snow model sensitivity analysis to understand spatial and temporal snow dynamics in a high-elevation catchment. Hydrol. Process. 2017, 31, 4151–4168. [Google Scholar] [CrossRef]
- Raleigh, M.S.; Lundquist, J.D.; Clark, M.P. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrol. Earth Syst. Sci. 2015, 19, 3153–3179. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42, W08432. [Google Scholar] [CrossRef]
- Painter, T.H.; Barrett, A.P.; Landry, C.C.; Neff, J.C.; Cassidy, M.P.; Lawrence, C.R.; McBride, K.E.; Farmer, G.L. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 2007, 34, L12502. [Google Scholar] [CrossRef]
- Painter, T.H.; Skiles, S.M.; Deems, J.; Bryant, A.C.; Landry, C.C. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res. 2012, 48, W07521. [Google Scholar] [CrossRef]
- Colbeck, S.C. An analysis of water flow in dry snow. Water Resour. Res. 1976, 12, 523–527. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Illangasekare, T.H.; Meier, M.F. Analysis and Modeling of Melt-Water Refreezing in Dry Snow. J. Glaciol. 1990, 36, 238–246. [Google Scholar] [CrossRef]
- Sturm, M.; Holmgren, J.; König, M.; Morris, K. The thermal conductivity of seasonal snow. J. Glaciol. 1997, 43, 26–41. [Google Scholar] [CrossRef]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Brogioni, M.; Ranzi, R.; Crepaz, A. Monitoring of melting refreezing cycles of snow with microwave radiometers: The Microwave Alpine Snow Melting Experiment (MASMEx 2002–2003). IEEE Trans. Geosci. Remote Sens. 2005, 43, 2431–2442. [Google Scholar] [CrossRef]
- Dewalle, D.R.; Rango, A.; Cambridge University Press. Principles of Snow Hydrology; Cambridge University Press: Cambridge, NY, USA, 2011. [Google Scholar]
- Cuffey, K.M.; WSB Paterson. The Physics of Glaciers; Butterworth-Heinemann, Cop.: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Mätzler, C.; Hüppi, R. Review of signature studies for microwave remote sensing of snowpacks. Adv. Space Res. 1989, 9, 253–265. [Google Scholar] [CrossRef]
- Samimi, S.; Marshall, S.J. Diurnal Cycles of Meltwater Percolation, Refreezing, and Drainage in the Supraglacial Snowpack of Haig Glacier, Canadian Rocky Mountains. Front. Earth Sci. 2017, 5, 6. [Google Scholar] [CrossRef]
- Kim, E.; Gatebe, C.; Hall, D.; Newlin, J.; Misakonis, A.; Elder, K.; Marshall, H.-P.; Hiemstra, C.; Brucker, L.; De Marco, E.; et al. NASA’s snowex campaign: Observing seasonal snow in a forested environment. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1388–1390. [Google Scholar]
- Hofer, R.; Mätzler, C. Investigations on snow parameters by radiometry in the 3- to 60-mm wavelength region. J. Geophys. Res. Earth Surf. 1980, 85, 453–460. [Google Scholar] [CrossRef]
- Nagler, T. Methods and Analysis of Synthetic Aperture Radar Data from ERS-1 and X-SAR for Snow and Glacier Applications. Ph.D. Thesis, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria, September 1996. [Google Scholar]
- Mätzler, C. Applications of the interaction of microwaves with the natural snow cover. Remote Sens. Rev. 1987, 2, 259–387. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; De Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef]
- Lievens, H.; Brangers, I.; Marshall, H.-P.; Jonas, T.; Olefs, M.; De Lannoy, G. Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps. Cryosphere 2022, 16, 159–177. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A. Indirect evaluation of snow reserves in mountain basins. IAHS Publ. 1991, 205, 111–119. [Google Scholar]
- Techel, F.; Pielmeier, C. Point observations of liquid water content in wet snow—Investigating methodical, spatial and temporal aspects. Cryosphere 2011, 5, 405–418. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G.; Press, M. Microwave Radar and Radiometric Remote Sensing; Ulaby, F.T., Ed.; The University of Michigan Press: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Nagler, T.; Rott, H. SAR tools for snowmelt modelling in the project HydAlp. In Proceedings of the IGARSS ‘98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings, Seattle, WA, USA, 6–10 July 1998. [Google Scholar]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Floricioiu, D.; Rott, H. Seasonal and short-term variability of multifrequency, polarimetric radar backscatter of Alpine terrain from SIR-C/X-SAR and AIRSAR data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2634–2648. [Google Scholar] [CrossRef]
- Valenti, L.; Small, D.; Meier, E. Snow cover monitoring using multi-temporal Envisat/ASAR data. In Proceedings of the 5th EARSeL LISSIG (Land, Ice, Snow) Workshop, Bern, Switzerland, 11–13 February 2008. [Google Scholar]
- Marin, C.; Bertoldi, G.; Premier, V.; Callegari, M.; Brida, C.; Hürkamp, K.; Tschiersch, J.; Zebisch, M.; Notarnicola, C. Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions. Cryosphere 2020, 14, 935–956. [Google Scholar] [CrossRef]
- Manickam, S.; Barros, A. Parsing Synthetic Aperture Radar Measurements of Snow in Complex Terrain: Scaling Behaviour and Sensitivity to Snow Wetness and Landcover. Remote Sens. 2020, 12, 483. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef]
- Brun, E. Investigation on Wet-Snow Metamorphism in Respect of Liquid-Water Content. Ann. Glaciol. 1989, 13, 22–26. [Google Scholar] [CrossRef]
- Reber, B.; Mätzler, C.; Schanda, E. Microwave signatures of snow crusts Modelling and measurements. Int. J. Remote Sens. 1987, 8, 1649–1665. [Google Scholar] [CrossRef]
- Strozzi, T.; Wiesmann, A.; Mätzler, C. Active microwave signatures of snow covers at 5.3 and 35 GHz. Radio Sci. 1997, 32, 479–495. [Google Scholar] [CrossRef]
- Lund, J.; Forster, R.R.; Rupper, S.B.; Deeb, E.J.; Marshall, H.P.; Hashmi, M.Z.; Burgess, E. Mapping Snowmelt Progression in the Upper Indus Basin with Synthetic Aperture Radar. Front. Earth Sci. 2020, 7, 318. [Google Scholar] [CrossRef]
- Liston, G.E.; Elder, K. A Distributed Snow-Evolution Modeling System (SnowModel). J. Hydrometeorol. 2006, 7, 1259–1276. [Google Scholar] [CrossRef]
- Liston, G.E.; Itkin, P.; Stroeve, J.; Tschudi, M.; Stewart, J.S.; Pedersen, S.H.; Reinking, A.K.; Elder, K. A Lagrangian Snow-Evolution System for Sea-Ice Applications (SnowModel-LG): Part I—Model Description. J. Geophys. Res. Oceans 2020, 125, e2019JC015913. [Google Scholar] [CrossRef] [PubMed]
- Liston, G.E.; Elder, K. A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet). J. Hydrometeorol. 2006, 7, 217–234. [Google Scholar] [CrossRef]
- Liston, G.E. Local Advection of Momentum, Heat, and Moisture during the Melt of Patchy Snow Covers. J. Appl. Meteorol. 1995, 34, 1705–1715. [Google Scholar] [CrossRef]
- Liston, G.E.; Hall, D.K. An energy-balance model of lake-ice evolution. J. Glaciol. 1995, 41, 373–382. [Google Scholar] [CrossRef]
- Liston, G.E.; Mernild, S.H. Greenland Freshwater Runoff. Part I: A Runoff Routing Model for Glaciated and Nonglaciated Landscapes (HydroFlow). J. Clim. 2012, 25, 5997–6014. [Google Scholar] [CrossRef]
- Liston, G.E.; Sturm, M. A snow-transport model for complex terrain. J. Glaciol. 1998, 44, 498–516. [Google Scholar] [CrossRef]
- Liston, G.E.; Haehnel, R.B.; Sturm, M.; Hiemstra, C.A.; Berezovskaya, S.; Tabler, R.D. Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol. 2007, 53, 241–256. [Google Scholar] [CrossRef]
- Liston, G.E.; Hiemstra, C.A. A Simple Data Assimilation System for Complex Snow Distributions (SnowAssim). J. Hydrometeorol. 2008, 9, 989–1004. [Google Scholar] [CrossRef]
- Barnes, S.L. A Technique for Maximizing Details in Numerical Weather Map Analysis. J. Appl. Meteorol. 1964, 3, 396–409. [Google Scholar] [CrossRef]
- Liston, G.; Sturm, M. The role of winter sublimation in the Arctic moisture budget. Water Policy 2004, 35, 325–334. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Baker, B.D.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.P.; Black, J.; Thériault, J.M.; Kucera, P.; Gochis, D.J.; et al. How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Am. Meteorol. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef]
- Sturm, M.; Wagner, A.M. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service. NRCS. Available online: https://www.nrcs.usda.gov/ (accessed on 6 June 2022).
- Mesowest. Available online: https://mesowest.utah.edu/ (accessed on 19 May 2022).
- National Water Information System. USGS. Available online: https://waterdata.usgs.gov/ (accessed on 16 March 2022).
- Vuyovich, C.; Marshall, H.P.; Elder, K.; Hiemstra, C.; Brucker, L.; McCormick, M. SnowEx20 Grand Mesa Intensive Observation Period Snow Pit Measurements, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [CrossRef]
- NASA SnowEx. National Snow & Ice Data Center. Available online: https://nsidc.org/data/snowex (accessed on 21 February 2022).
- Alaska Satellite Facility. Available online: https://asf.alaska.edu (accessed on 8 June 2020).
- SNAP–ESA. SNAP–ESA Sentinel Application Platform v9.0.0. Available online: http://step.esa.int (accessed on 1 July 2022).
- Copernicus DEM. Copernicus Space Component Data Access. (n.d.). Available online: https://spacedata.copernicus.eu/ (accessed on 13 June 2022).
- Dewitz, J. National Land Cover Database (NLCD) 2019 Products; U.S. Geological Survey: Denver, CO, USA; Menlo Park, CA, USA, 2021. [CrossRef]
- Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Vienna R Foundation for Statistical Computing: Vienna, Austria, 2013; pp. 1–12. Available online: www.R-project.org (accessed on 13 June 2022).
- Dressler, K.A.; Fassnacht, S.; Bales, R.C. A Comparison of Snow Telemetry and Snow Course Measurements in the Colorado River Basin. J. Hydrometeorol. 2006, 7, 705–712. [Google Scholar] [CrossRef]
- Meyer, J.D.D.; Jin, J.; Wang, S.-Y. Systematic Patterns of the Inconsistency between Snow Water Equivalent and Accumulated Precipitation as Reported by the Snowpack Telemetry Network. J. Hydrometeorol. 2012, 13, 1970–1976. [Google Scholar] [CrossRef]
- Miranda, N.; Piantanida, R.; Recchia, A.; Franceschi, N.; Small, D.; Schubert, A.; Meadows, P.J. S-1 Instrument and Product Performance Status: 2018 Update. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, 22–27 July 2018; pp. 1551–1554. [Google Scholar] [CrossRef]
Site | Latitude, Longitude | Elevation (m) | Organization |
---|---|---|---|
Mesa Lakes SNOTEL | 39.06, −108.06 | 3099 | NRCS |
Mesa West Study Plot | 39.03, −108.21 | 3033 | SnowEx |
Park Reservoir SNOTEL | 39.05, −107.88 | 3044 | NRCS |
Skyway Study Plot | 39.05, −108.06 | 3239 | CAIC |
Surface Creek Stream Gauge | 38.98, −107.85 | 2521 | USGS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lund, J.; Forster, R.R.; Deeb, E.J.; Liston, G.E.; Skiles, S.M.; Marshall, H.-P. Interpreting Sentinel-1 SAR Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and Physically-Based SnowModel. Remote Sens. 2022, 14, 4002. https://doi.org/10.3390/rs14164002
Lund J, Forster RR, Deeb EJ, Liston GE, Skiles SM, Marshall H-P. Interpreting Sentinel-1 SAR Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and Physically-Based SnowModel. Remote Sensing. 2022; 14(16):4002. https://doi.org/10.3390/rs14164002
Chicago/Turabian StyleLund, Jewell, Richard R. Forster, Elias J. Deeb, Glen E. Liston, S. McKenzie Skiles, and Hans-Peter Marshall. 2022. "Interpreting Sentinel-1 SAR Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and Physically-Based SnowModel" Remote Sensing 14, no. 16: 4002. https://doi.org/10.3390/rs14164002
APA StyleLund, J., Forster, R. R., Deeb, E. J., Liston, G. E., Skiles, S. M., & Marshall, H. -P. (2022). Interpreting Sentinel-1 SAR Backscatter Signals of Snowpack Surface Melt/Freeze, Warming, and Ripening, through Field Measurements and Physically-Based SnowModel. Remote Sensing, 14(16), 4002. https://doi.org/10.3390/rs14164002