Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar
Abstract
:1. Introduction
2. Study Site and Datasets
2.1. Study Site
2.2. Field Sampling Data
2.3. Remote Sensing Data
3. Methods
3.1. Sentinel-1 Polarization Parameter Acquisition
3.2. River Ice Extent
3.3. Program Design
3.4. Evaluation Methods
4. Results
4.1. Babao River
4.1.1. Scheme Fitting Effects
4.1.2. Independent Validation of the Inversion Equations for the Babao River
4.2. Binggou River
4.2.1. Scheme Fitting Effects
4.2.2. Independent Validation of the Inversion Equations for the Binggou River
4.3. Intervalidation of the Babao River and Binggou River Schemes
4.4. Influence of River Ice Thickness on the Inversion Accuracy
5. Discussion
5.1. Similarities and Differences with Existing Polarized River Ice Inversion Methods
5.2. Findings of This Study
5.3. Shortcomings and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooley, S.W.; Pavelsky, T.M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sens. Environ. 2016, 175, 310–322. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wang, J.; Hao, X. Identifying river ice on the Tibetan Plateau based on the relative difference in spectral bands. J. Hydrol. 2021, 601, 126613. [Google Scholar] [CrossRef]
- Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sens. Environ. 2019, 224, 352–364. [Google Scholar] [CrossRef]
- Beltaos, S. Threshold between mechanical and thermal breakup of river ice cover. Cold Reg. Sci. Technol. 2003, 37, 1–13. [Google Scholar] [CrossRef]
- Muhammad, P.; Duguay, C.; Kang, K.K. Monitoring ice break-up on the Mackenzie River using MODIS data. Cryosphere 2016, 10, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, H.; Wang, J.; Hao, X. Monitoring high-altitude river ice distribution at the basin scale in the northeastern Tibetan Plateau from a Landsat time-series spanning 1999–2018. Remote Sens. Environ. 2020, 247, 111915. [Google Scholar] [CrossRef]
- Jasek, M.; Weber, F.; Hurley, J. Ice Thickness and Roughness Analysis on the Peace River using RADARSAT-1 SAR Imagery. In Proceedings of the 12th Workshop on the Hydraulics of Ice Covered Rivers, Edmonton, AB, Canada, 19–20 June 2003. [Google Scholar]
- Mermoz, S.; Allain, S.; Bernier, M.; Pottier, E. Investigation of Radarsat2 and TerraSAR-X data for river ice classification. In Proceedings of the Geoscience & Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Kämäri, M.; Alho, P.; Colpaert, A.; Lotsari, E. Spatial variation of river-ice thickness in a meandering river. Cold Reg. Sci. Technol. 2017, 137, 17–29. [Google Scholar] [CrossRef]
- Mermoz, S.; Allain-Bailhache, S.; Bernier, M.; Pottier, E.; Van Der Sanden, J.J.; Chokmani, K. Retrieval of River Ice Thickness From C-Band PolSAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3052–3062. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, R.; Ghasri, M.; Qi, Z.; Quilty, J.; Adamowski, J. Using bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie River Basin in the Northwest Territories, Canada. J. Hydrol. 2019, 577, 123903. [Google Scholar] [CrossRef]
- Luo, S.; Song, C.; Zhan, P.; Liu, K.; Chen, T.; Li, W.; Ke, L. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. Catena 2021, 200, 105177. [Google Scholar] [CrossRef]
- Zhi-Jun, L.I.; Sun, W.G.; Shi-Guo, X.U.; Qing-Shan, L.I.; Bai, Y.; Wang, X. Calculating river ice thickness from Harbin to Tongjiang using short-term hydrological and meteorological data. Adv. Water Sci. 2009, 20, 428–433. [Google Scholar]
- Chu, T.; Lindenschmidt, K.-E. Integration of space-borne and air-borne data in monitoring river ice processes in the Slave River, Canada. Remote Sens. Environ. 2016, 181, 65–81. [Google Scholar] [CrossRef]
- Unterschultz, K.D.; van der Sanden, J.; Hicks, F.E. Potential of RADARSAT-1 for the monitoring of river ice: Results of a case study on the Athabasca River at Fort McMurray, Canada. Cold Reg. Sci. Technol. 2009, 55, 238–248. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Syrenne, G.; Harrison, R. Measuring Ice Thicknesses along the Red River in Canada Using RADARSAT-2 Satellite Imagery. J. Water Resour. Prot. 2010, 2, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Puestow, T.M.; Randell, C.J.; Rollings, K.W.; Khan, A.; Picco, R. Near real-time monitoring of river ice in support of flood forecasting in eastern Canada: Towards the integration of Earth observation technology in flood hazard mitigation. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Toyota, T.; Ono, S.; Cho, K.; Ohshima, K.I. Retrieval of sea-ice thickness distribution in the Sea of Okhotsk from ALOS/PALSAR backscatter data. Ann. Glaciol. 2011, 52, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Sanden, J.; Drouin, H. Satellite SAR Observations of River Ice Cover: A RADARSAT-2 (C-band) and ALOS PALSAR (L-band) Comparison. In Proceedings of the 16th Workshop on River Ice, Winnipeg, MB, Canada, 18–22 September 2011. [Google Scholar]
- Li, H.; Li, H.; Wang, J.; Hao, X. Extending the Ability of Near-Infrared Images to Monitor Small River Discharge on the Northeastern Tibetan Plateau. Water Resour. Res. 2019, 55, 8404–8421. [Google Scholar] [CrossRef]
- Yang, X.; Pavelsky, T.M.; Allen, G.H. The past and future of global river ice. Nature 2020, 577, 69–73. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 2002, 37, 2363–2373. [Google Scholar]
- Gouveia, N.D.A.; Alves, F.C.; Pereira, L.D.O. Pre-processing of Sentinel-1 C-band SAR images based on incidence angle correction for dark target detection. Remote Sens. Lett. 2019, 10, 939–948. [Google Scholar] [CrossRef]
- Ji, K.; Wu, Y. Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR. Remote Sens. 2015, 7, 7447–7470. [Google Scholar] [CrossRef] [Green Version]
- Harfenmeister, K.; Itzerott, S.; Weltzien, C.; Spengler, D. Agricultural Monitoring Using Polarimetric Decomposition Parameters of Sentinel-1 Data. Remote Sens. 2021, 13, 575. [Google Scholar] [CrossRef]
- Hong, R.; Guo, X.; Tu, J.; Rui, Z. The Water Extraction and Flood Season Changes Detection of Poyang Lake Based on Dual Polarized Sentinel-1A Image Data. Geomat. Sci. Technol. 2018, 6, 298–308. [Google Scholar] [CrossRef]
- Han, H.S.; Kim, B.J.; Lee, H.Y. A Study on the Measurement of River Ice Thickness by Using X-band Scatterometer. Geophys. Geophys. Explor. 2012, 15, 16–22. [Google Scholar] [CrossRef]
- Dumitru, C.O.; Datcu, M. Information Content of Very High Resolution SAR Images: Study of Feature Extraction and Imaging Parameters. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4591–4610. [Google Scholar] [CrossRef]
- Gherboudj, I.; Bernier, M.; Leconte, R. A Backscatter Modeling for River Ice: Analysis and Numerical Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1788–1798. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, H.; Li, H. Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar. Remote Sens. 2022, 14, 2591. https://doi.org/10.3390/rs14112591
Zhang H, Li H, Li H. Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar. Remote Sensing. 2022; 14(11):2591. https://doi.org/10.3390/rs14112591
Chicago/Turabian StyleZhang, Huan, Hongyi Li, and Haojie Li. 2022. "Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar" Remote Sensing 14, no. 11: 2591. https://doi.org/10.3390/rs14112591
APA StyleZhang, H., Li, H., & Li, H. (2022). Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar. Remote Sensing, 14(11), 2591. https://doi.org/10.3390/rs14112591