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Abstract: The transition of a cold winter snowpack to one that is ripe and contributing to runoff is
crucial to gauge for water resource management, but is highly variable in space and time. Snow
surface melt/freeze cycles, associated with diurnal fluctuations in radiative inputs, are hallmarks of
this transition. C-band synthetic aperture radar (SAR) reliably detects meltwater in the snowpack.
Sentinel-1 (S1) C-band SAR offers consistent acquisition patterns that allow for diurnal investigations
of melting snow. We used over 50 snow pit observations from 2020 in Grand Mesa, Colorado, USA,
to track temperature and wetness in the snowpack as a function of depth and time during snowpack
phases of warming, ripening, and runoff. We also ran the physically-based SnowModel, which
provided a spatially and temporally continuous independent indication of snowpack conditions.
Snowpack phases were identified and corroborated by comparing field measurements with Snow-
Model outputs. Knowledge of snowpack warming, ripening, and runoff phases was used to interpret
diurnal changes in S1 backscatter values. Both field measurements and SnowModel simulations
suggested that S1 SAR was not sensitive to the initial snowpack warming phase on Grand Mesa. In
the ripening and runoff phases, the diurnal cycle in S1 SAR co-polarized backscatter was affected by
both surface melt/freeze as well as the conditions of the snowpack underneath (ripening or ripe).
The ripening phase was associated with significant increases in morning backscatter values, likely
due to volume scattering from surface melt/freeze crusts, as well as significant decreases in evening
backscatter values associated with snowmelt. During the runoff phase, both morning and evening
backscatter decreased compared to reference values. These unique S1 diurnal signatures, and their
interpretations using field measurements and SnowModel outputs, highlight the capacities and
limitations of S1 SAR to understand snow surface states and bulk phases, which may offer runoff
forecasting or energy balance model validation or parameterization, especially useful in remote or
sparsely-gauged alpine basins.

Keywords: Sentinel-1; SnowEx; SnowModel; diurnal SAR; SAR wet snow; melt/freeze; wet snow;
snow remote sensing; snow modeling; snowmelt

1. Introduction and Background

Gauging the transition of a cold winter snowpack to one that is ripe and contributing
to runoff underpins successful water resource management; it can vary substantially in
space and time [1]. Accurately determining this transition is challenged by topographic
and orographic complexity, spatial and temporal heterogeneity in snow precipitation as
well as post-depositional processes, and sparse measurement in complex and varying
mountainous terrain from which snowmelt often originates. Empirically-based runoff
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forecasting models that relate current conditions to the historical record are based on
calibrated relationships that may not hold in a non-stationary climate. These methods are
widely used in operational forecasting due to their simplicity and computational efficiency,
but they do not incorporate all of the physical drivers and processes related to runoff;
significant forecasting errors can result (e.g., [2,3]).

Field measurements offer indications of snowpack conditions that are discrete in
space and time; while these measurements are typically accurate, they are often time-
and labor-intensive, and are difficult to extrapolate to the catchment scale. Remotely
sensed data offer a regional timestamp of snowpack conditions. A benefit of synthetic
aperture radar (SAR) is the ability to image day or night and through cloud cover; the
spatial resolution is often on the order of tens of meters, which allows for insight into
some of the highly (spatially) variable snowpack processes. Additionally, C-band (about
5.5 cm wavelength) SAR is sensitive to the snowpack at multiple interfaces [4], which
may be leveraged for understanding the energetic status of the snowpack. However,
accurate interpretation of SAR snow signatures may require field validation and site-
specific knowledge. Physically-based models mimic snow processes, offering a continuous
(in space and time) indication of snowpack conditions; however, their performances are
largely reliant on the quality of input data, and uncertainties from various sources (i.e.,
inputs, parameters, processes) proliferate to the results [5–7]. The integration of multiple
observation modalities offers complementary perspectives on snowpack conditions and
their potential drivers, which may also support anticipating changes in snowpack processes
and runoff as climate changes.

In this study, we used snow pit observations from three related NASA SnowEx field
campaigns during the winter and spring of 2020 in Grand Mesa, Colorado, to track tempera-
ture and wetness in the snowpack with depth and time. We used these field measurements
to compare with physically-based SnowModel outputs of snow conditions in order to
identify snowpack phases of warming, ripening, and runoff. Knowledge of these snowpack
phases was then used to interpret diurnal changes in Sentinel-1 (S1) SAR backscatter values
for the same timeframe. This interpretation highlights the capacities and limitations of S1
diurnal SAR to identify snow surface states and bulk phases remotely, which may provide
spatially explicit information on snow conditions with which to compare, validate, or
parameterize runoff forecasting or energy balance models, especially useful in remote or
sparsely gauged terrain.

After providing background information for snowpack seasonal transitions, NASA
SnowEx, S1 SAR wet snow identification, and SnowModel, we present the materials and
methods used in this study in Section 2. Results for field measurements, S1 SAR, Snow-
Model, and their integration are presented in Section 3. The discussion and conclusions are
presented in Sections 4 and 5.

1.1. Snowpack Seasonal Transitions: Melt/Freeze Cycles, Warming, and Ripening

The transition of a cold winter snowpack to one that is ripe and contributing to runoff
can be understood in three general phases: (1) warming, in which the snowpack is sub-
freezing and incoming energy increases snowpack temperature; (2) ripening, during which
the snowpack has warmed and incoming energy generates melt, yet bulk liquid water
holding capacity has not yet been overcome; and (3) runoff, in which the snowpack is
ripe (i.e., isothermal and saturated), and additional energy leads to snowpack runoff and
melt-out. Energy for all three of these phases is dominated at the surface by net solar
radiation, which is determined by irradiance and snow albedo [8–10]. Once the snow
surface warms to the melting point (0 ◦C) and excess energy generates melt, liquid water
dominates mass and energy exchange within the snowpack [10–16]. In reality, all three
phases of snowpack melt-out can occur simultaneously within relatively small horizontal
and vertical distances (e.g., [1]). This heterogeneity represents the challenge of modeling
snowpack energy fluxes accurately in order to anticipate snowmelt runoff.
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As shortwave radiation is a dominant source of melt energy during daylight hours,
nighttime energy fluxes consequently contrast strongly to those during the day. Liquid
water held by capillary forces in the snowpack can refreeze overnight due to a negative
energy flux to the atmosphere, often dominated by longwave and sensible heat fluxes from
a melting snowpack constrained to 0 ◦C. At the surface, refrozen crusts can develop quickly
and become several centimeters thick overnight [14,17]. Early in the ablation season, the
entire depth of liquid water present in the snowpack often refreezes overnight [17]. Later
in the melt season, the bulk of the snowpack more often remains wet with a refrozen crust
formed at the surface. In both cases, the refrozen crust represents an energy sink that must
be overcome before snowpack ripening or runoff resume the following day. The recycling
of meltwater due to nightly refreeze can represent a significant energy sink. For example,
Reference [18] concluded that 10–15% of available melt energy for a given season was
diverted to warm and melt refrozen meltwater on the Haig Glacier in Canada.

1.2. NASA SnowEx Campaign

NASA SnowEx is a multi-year widely collaborative field campaign funded by the
NASA Terrestrial Hydrology Program with the goal to address knowledge gaps related
to the remote sensing of snow and to identify a pathway to accurate spaceborne snow
measurements [19]. The campaign fuses a wide variety of in situ, airborne and spaceborne
remotely sensed, and numerical modeling approaches to constrain understanding of snow
characteristics for a spectrum of terrain, vegetation, and climate settings. Coordinated
field and airborne campaigns have taken place in the western United States in 2017, 2020,
and 2021.

In 2020, SnowEx utilized a multi-pronged approach, which included a time series
campaign where weekly measurements were taken at thirteen sites in the western US by
local researchers, coinciding with airborne measurements. SnowEx 2020 also included a
three-week intensive observation period (IOP) on Colorado’s Grand Mesa, where several
researchers performed a wide range of field measurements coordinated with airborne
measurements of radar, radiometer, thermal infrared, and LiDAR observations, as well as
focused satellite acquisitions.

1.3. Synthetic Aperture Radar and the Snowpack

In dry snow, C-band radar (centered at 5 cm wavelength) penetration depth is on the
order of 20 m [20,21]. While interacting with multiple interfaces of the snowpack—the
air-snow boundary, within the snowpack, and the snow-substrate boundary—the primary
source of backscatter and reflection stem from the radar interaction at the snow-substrate
interface. Refrozen and heterogeneous features in the snowpack can also contribute to
volumetric scattering and/or lead to depolarization [22–24].

With liquid water present in the snowpack, microwave interaction changes drastically,
primarily because of the order of magnitude difference in the permittivity of liquid water
compared to that of ice or air. In a 30 cm snowpack with 1% liquid water content (LWC)
by volume (likely less than irreducible water content), ref. [21] found C-band radar pen-
etration limited to 11 cm, approximately two wavelengths. In snow with LWC of 5% by
volume, radar penetration is typically limited to a single wavelength, resulting in extremely
low backscatter [22,25,26]. With increasing water content, radar attenuation increases and
backscatter values decrease, providing the basis for threshold-based wet snow identifi-
cation [22,27]. Developed as a means to circumnavigate local incidence angle effects on
backscatter values, threshold-based wet snow identification is possible because backscatter
values from similar SAR geometries of snow-free or dry snow-covered surfaces vary little
over time compared to the strongly attenuated backscatter of snow with liquid water
present. Based on field studies and comparisons with optical data, thresholds of −2 to −3
dB are often used to identify wet snow for co-polarized C-band SAR signals [21,28–32].
More recently, with co- and cross-polarized SAR imagery routinely available, algorithms
have been developed that integrate these polarizations (e.g., [33,34]).
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1.3.1. Diurnal Changes in SAR Return

Some studies of microwave backscatter signatures in alpine snowpacks have observed
temporal variation of backscatter in wet snowpacks due to surface refreezing, which
causes an increase in backscatter due to the lack of liquid water present as well as the
volumetric scattering due to large grains of the refrozen layer [30,34–37]. A lack of SAR
sensors with consistent acquisitions has limited ongoing research on spaceborne backscatter
signals from refrozen snow surfaces and their seasonal evolution. However, [37] observed
backscatter changes in sensors at varying frequencies for melt–freeze crusts in the Austrian
Alps. Although higher frequency wavelengths were able to better identify refrozen crusts
stratigraphically over either wet or dry snow, C-band radar could reliably detect refrozen
crusts over a dry snowpack, e.g., early melt season diurnal cycles that refreeze the entirety
of meltwater in a snowpack that is not yet ripe. With the launch of the European Space
Agency’s Sentinel-1 (S1) C-band SAR constellation in 2016, consistent acquisition patterns
in the morning and evening for ascending and descending passes (often 6 or 12 days apart
for the same orbital track) allow for a diurnal comparison of SAR indications of wet snow.
Recent studies have indicated the potential of these acquisition patterns to identify surface
melt/freeze cycles early in the ablation season (e.g., [32,38]). However, an in-depth field
study throughout the early melt season, which captures surface melt/freeze cycles through
snowpack warming and ripening, is required to better understand how these diurnally
differing SAR signals may be interpreted as indications of snowpack energy status.

A primary question is whether S1 SAR backscatter is sensitive to surface melt/freeze
cycles as well as the status of the underlying snowpack (i.e., warming, ripening, or ripe
and contributing to runoff). By refining this interpretive information, diurnally differing
SAR-derived snow conditions may be used to provide spatially explicit information for
parameterization or validation of energy balance and runoff forecasting models, especially
useful in sparsely gauged, complex, or remote alpine basins.

1.4. SnowModel

SnowModel ([39], and appendices in [40]) is a multi-layer, spatially distributed,
physically-based, snow-evolution modeling system designed for any landscape or icescape
where snow occurs. Within this model, four submodels are interconnected: (1) Mi-
croMet [41] is a data assimilation and interpolation model that utilizes meteorological
inputs from stations and/or gridded atmospheric data sets to distribute meteorological
forcing throughout the study area using known topographic-meteorological relationships;
(2) EnBal [42] calculates snow atmosphere energy exchanges; (3) SnowPack [43,44] simu-
lates snow depth and water equivalent evolution, and (4) SnowTran-3D [45,46] accounts
for snow redistribution by wind. SnowModel can be run with spatial resolutions from
1 m to 100 km, using temporal increments of 1 h to 1 day. Simulated snow processes
include snow accumulation, redistribution, sublimation, density evolution, ripening, melt,
refreezing of meltwater, and runoff; canopy interactions, such as interception, unloading,
and sublimation, are also represented. The required SnowModel inputs include temporally
varying fields of precipitation, wind speed and direction, air temperature, and relative
humidity, and temporally invariant topographic and land cover distributions.

SnowAssim [47] provides a method for assimilating ground-based and remotely
sensed snow measurements within SnowModel. It is consistent with optimal interpolation
data assimilation approaches, where the differences between the observed and modeled
snow values are used to constrain the modeled outputs. An initial SnowModel simulation
is performed and the differences, in space and time, between the snow measurements and
model representations are calculated. These differences are interpolated spatially and tem-
porally using a Barnes objective analysis scheme [48], and the associated correction fields
are applied in a second SnowModel run. Due to the Barnes interpolation, corrected snow
surfaces will be less than the maximum and greater than the minimum observed values,
which addresses any outliers associated with potential measurement errors. This correction
field approach thereby maintains the snow spatial patterns, variability, and evolution that
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are a strength of SnowModel physics, while generally correcting precipitation and melt
quantities so the model simulation better fits the observed SWE measurements when and
where they occur. Due to spatiotemporal variability in precipitation and post-depositional
processes, accurate snow precipitation and accumulation measurements present a ma-
jor challenge, e.g., [49,50]. SnowAssim is regularly used to assimilate observations of
snow-onset and snow-free dates, snow-melt rates, SWE, and density (e.g., [40,51]).

Spatially distributed, physically-based models—especially those that incorporate in
situ observations—offer an opportunity to bridge the discrete nature (in space and time) of
field measurements and (in time) of remotely sensed imagery. However, it is important to
note that uncertainties in model inputs proliferate to model results [5–7]. For this reason,
we utilized field measurements to inform and/or assess model outputs, and with integrated
snow data outputs compare S1-derived diurnal snow conditions to assess the capacities
and limitations of utilizing S1 SAR as an indication of snowpack status.

2. Materials and Methods
2.1. Study Area: Grand Mesa, Colorado, USA

Grand Mesa (Figure 1) is the largest flat top mountain in the world, encompassing
about 1300 km2 above 3000 m; the average elevation is 3145 m. Dominant land covers on
the Mesa are grassland/herbaceous and evergreen trees. The Mesa Lakes SNOTEL site,
located on the north–central part of the Mesa, calculates a 30-year median (1991–2020) of
84.8 cm annual precipitation, 45.5 cm (w.e.) of which falls as snow. Median snow onset
takes place on October 23; the median melt-out date at this location is June 1. The median
annual average temperature is 1.8 ◦C.

Grand Mesa was a focal point of the field study for the NASA SnowEx campaign, with
an intensive multi-week field campaign in January/February 2020 where physical snow
measurements as well as a multitude of ground-based and airborne instruments capturing
snow properties were deployed. It was also one of the SnowEx 2020 Time Series sites,
with weekly measurements from December 2019 to March 2020. With regard to this study,
the consistent topography of the Mesa top offers an opportune venue to study snowpack
processes prior to melt-out, as the spatiotemporal variability inherent in these processes is
not compounded by topographic complexity.

2.2. Data
2.2.1. Meteorological and Streamflow Data

Major meteorological variables were gathered from four primary sites (Figure 1, pur-
ple): (1) the Mesa Lakes Natural Resource Conservation Service (NRCS) SNOTEL site [52],
(2) the Park Reservoir NRCS SNOTEL site, (3) the nearby Skyway Snow Study Plot, down-
loaded from MesoWest and made available through the Colorado Avalanche Information
Center and the Meteorological Assimilation Data Ingest System) [53], and (4) the NASA
SnowEx Mesa West study plot. Site locations are listed in Table 1. Meteorological variables
(air temperature, relative humidity, wind speed and direction, and precipitation) on a
3-hourly time step were used as inputs for SnowModel. A few SWE measurements from
the Mesa Lakes SNOTEL site were also incorporated into SnowModel. Select environmen-
tal variables from the Mesa Lakes and Park Reservoir SNOTEL sites, as well streamflow
measurements from the US Geological Survey (USGS) Surface Creek stream gauge ([54];
Figure 1, blue), are presented in the Section 3 to provide context for the snow accumulation
and ablation seasons.
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(bottom right). Meteorological/SNOTEL sites, USGS stream gauge, SnowEx IOP, Time Series, and 
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Figure 1. Grand Mesa, Colorado, USA. The study area is outlined in orange in the overview map
(bottom right). Meteorological/SNOTEL sites, USGS stream gauge, SnowEx IOP, Time Series, and
Pathfinder measurement sites are identified. Focus backscatter study areas in grassland/herbaceous
and evergreen land covers are outlined.

Table 1. Meteorological and streamflow sites used.

Site Latitude, Longitude Elevation (m) Organization

Mesa Lakes SNOTEL 39.06, −108.06 3099 NRCS
Mesa West Study Plot 39.03, −108.21 3033 SnowEx

Park Reservoir SNOTEL 39.05, −107.88 3044 NRCS
Skyway Study Plot 39.05, −108.06 3239 CAIC

Surface Creek Stream Gauge 38.98, −107.85 2521 USGS

2.2.2. Snow Pit Measurements

Snow pit measurements were gathered from three related field campaigns: (1) the
SnowEx Time Series campaign of winter 2019–2020 (hereafter referred to as Time Series)
gathered snow measurements from 13 different locations throughout the western United
States weekly from December 2019 through March of 2020 (Figure 1, cyan). These mea-
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surements were ended early in March 2020 due to the onset of the COVID-19 pandemic;
(2) the SnowEx Intensive Observation Period on Grand Mesa (hereafter referred to as IOP)
from 28 January –12 February 2020 dug and measured 154 snow pits [55] (Figure 1, grey);
and (3) research supported by the CUAHSI Pathfinder Fellowship (hereafter referred to as
Pathfinder), which took place in March and April 2020; 51 pits were dug at two primary
site locations on the Mesa, matching measurement protocols with the SnowEx Time Series
and IOP campaigns (Figure 1, yellow). Pit measurement data, including date, location, and
associated campaign, are listed in Table S1. All of the pit measurements referenced in this
study, from all three related campaigns (Pathfinder measurements were consolidated with
Time Series measurements), are or will be available through the National Snow and Ice
Data Center (NSIDC) [56].

Snow pit variables used include snowpack temperature, permittivity, density, and
stratigraphy; measurement protocols and instrumentation are described in [55]. The
temperature was measured at the snow surface and 10 cm intervals with depth with a
Copper-Atkins digital thermometer, with a resolution of 0.1 ◦C and accuracy of ±1 ◦C.
Snow permittivity was measured using an A2 Photonics WISe instrument, measured every
10 cm with depth. This is utilized with density measurements, also taken every 10 cm with
depth, using a 1000 cc wedge-shaped Snow Density sampler and with an accuracy of ±1%
by volume along with an AD-3000 digital scale with 1 g resolution and 1 g repeatability.
Stratigraphy was also measured for the snowpack; manual wetness for each layer, rated
on a five-point scale (dry, moist, wet, very wet, soaked), was used in this study. Manual
wetness is determined by varying levels of snow cohesion as well as perceived moisture.

While the SnowEx Time Series and IOP snow pit times and locations were determined
in line with SnowEx 2020 overarching objectives, the Pathfinder snow pits were dug on
coincident dates, and as near in time as possible, to S1 overpasses. Pits were dug and
measurements made in between S1 overpasses as well, to track snowpack conditions
with depth throughout snowpack warming and ripening. Pit measurements were used to
provide information about snow conditions at the time of (and in between) S1 overpasses,
and measured SWE was also used to inform SnowModel runs.

2.2.3. European Space Agency Sentinel-1 SAR Imagery

Operating at a center frequency of 5.407 GHz (C-band, 5.5 cm), the ESA S1 constel-
lation was first launched in April 2014 with Sentinel-1A. After the launch of Sentinel-1B
in April 2016, revisit times for much of the western United States are 12 days for each
ascending and descending pass in dual polarization (VH and VV). Local acquisition times
are approximately 7:18 and 19:10 Mountain Daylight Time for descending and ascend-
ing passes, respectively. Ground range detected high-resolution imagery from July 2019
through June 2020 were downloaded from the Alaska Satellite Facility Distributed Active
Archive Center [57] and processed using the open-source ESA Sentinel Application Plat-
form (SNAP) [58], adapted from [38]; Figure 2). Images used in the analyses are listed in
Table S2; the entire study area is within one S1 frame for both ascending and descending
orbital passes.

2.2.4. Copernicus Digital Elevation Model

The ESA Copernicus GLO-30 digital elevation model (DEM), at a resolution of 30 m,
was used for S1 processing and analysis; these data are freely available through ESA
SNAP software as well as through the ESA’s Copernicus Space Component Data Access
portal [59].

2.2.5. Landcover

The National Landcover Database (NLCD) 2019, a 30 m Landsat-derived landcover
dataset available from the USGS, was used to identify dominant landcover classes on the
Mesa top to focus backscatter analysis [60].
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2.3. Methods
2.3.1. Snow Pit Measurement Comparison and Integration

From the snow pit measurements collected from the Time Series, IOP, and Pathfinder
campaigns, we implemented a decision tree method to compare measured snow conditions
to S1 diurnal snow conditions. For a given date, we gathered all pits measured in open
spaces (i.e., without tree cover). Upon cursory comparison for snow pit measurements at
depth for each date, we found that snow conditions in treeless areas were very comparable
at different locations on the Mesa (e.g., when bulk snowpack temperatures were either
subfreezing in the winter or warming in spring, these general temperature ranges were
consistent at different study sites). With this consistency in mind, we present the nearest
in-time pit measurements to S1 overpass times (approximately 7:00 and 19:00 Mountain
Daylight Time). We utilized pit measurements of temperature at depth (taken at 10 cm
intervals), as well as manual wetness measurements (taken at depths determined by
snowpack stratigraphy). For standardized comparison and visualization with depth, we
interpolated stratigraphic manual wetness measurements to even 10 cm intervals. We
also utilized measured permittivity and snow density to compare a range of LWC values
with manual snow wetness measurements. Presented pit measurements offer insights,
discrete in space and time, into snowpack conditions during winter, warming, ripening,
and runoff phases, which we used to interpret S1 diurnal snow conditions during those
same timeframes.

2.3.2. Sentinel-1 Diurnal Wet Snow

S1 image processing workflows can be viewed in Figure 2A, adapted from [38] using
ESA open-source SNAP software [58]. The output of SAR processing is radiometric terrain
corrected [61] gamma nought (γ0) backscatter image for a given date, at 30 m resolution.
Backscatter values for two dominant land cover classes on the Mesa, grassland/herbaceous
and evergreen forest, are explored from 2019–2020.

For wet snow identification, multiple threshold-based change detection algorithms
were explored for the Mesa. Processed melt season images were first co-registered with a
reference image, which was an average of several co-registered images from antecedent
snow-free (July–August 2019) and/or dry snow (December 2019–January 2020) conditions,
and the ratio of the two images was calculated (Figure 2B). This ratio image was developed
for three different peer-reviewed wet snow threshold approaches: (1) −2 to −3 dB threshold
using either co- (VV) or cross-polarized (VH) ratios [21,27–31]; (2) −2 dB threshold using
both co- and cross-polarized ratios, combined by weighting ratio values according to local
incidence angle, following the algorithm developed by [34]; and (3) −1.2 dB threshold
using both co- and cross-polarized ratio images, combined by weighting ratio values
according to cross-polarized image ratio thresholds, following the algorithm developed
by [33] specifically for wet snow identification on Grand Mesa. For all three threshold
algorithms, pixels with a ratio value at or below the specified threshold were designated
as ‘wet snow;’ to reduce the impact of noise, a 3 × 3 moving window was then applied to
determine binary wet/not wet snow (Figure 2C, white). Pixels with local incidence angles
less than 15 or greater than 75 degrees, as well as pixels affected by layover or shadow,
were masked out (less than 1% of the analyzed area) [34]. Water bodies, identified through
the NLCD 2019 dataset [60], were also masked (Figure 2C, gray).

To generate a diurnal S1 snow conditions map, we first selected only snow-covered
pixels (determined from SnowModel outputs) above 2900 m to limit the study to the Mesa
top. Next, with binary wet snow maps generated for each orbit, coinciding descending
(morning) and ascending (evening) passes were compared pixel-wise using the method
generated in [38], with four possible output categories: (1) pixels that register as wet for
both morning and evening passes, (2) pixels assigned not wet in the morning but wet in the
evening; (3) pixels determined wet in the morning but not in the evening; and (4) pixels that
do not register as wet in either pass (labeled SnowModel snow). An example of morning
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and evening wet snow identification, resulting in a diurnal S1 snow conditions map, is
shown in Figure 3. All post-processing steps and analyses were accomplished in R [62].
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Figure 2. (A) Sentinel-1 processing steps, performed in the European Space Agency’s SNAP open-
source software; (B) Backscatter image threshold wet snow identification process, accomplished in
R [62]; (C) Example binary wet snow map.

2.3.3. SnowModel

In order to capture the diurnal cycle, we run SnowModel from [39] on a three-hour
time step, with meteorological and environmental inputs specified in Section 2.2.1. We
incorporate measured bulk SWE from 69 snow pit measurements (Supplementary Table
S1) from Time Series, IOP, and Pathfinder campaigns as described in Section 2.2.2. We also
incorporate three SWE measurements from the Mesa Lakes SNOTEL site, to refine snow
onset and melt-out dates at that location. We track variables such as SWE, snow melt, and
runoff, along with energy balance variables such as air temperature and net radiation, for
one of the selected snow pit measurement locations throughout snow accumulation and
ablation seasons.

We also utilize spatially distributed SnowModel outputs of SWE, snow surface melt,
and snowmelt runoff to compare with surface states derived from S1 diurnal snow con-
ditions. SnowModel surface melt below a threshold of 0.35 cm is ignored, to facilitate S1
diurnal comparison, which we find insensitive to minor surface melt. If snow runoff is cal-
culated for three timesteps the day before and the day of diurnal comparison, SnowModel
diurnal comparison determines that pixel to be in the ‘runoff’ phase, comparable to S1 di-
urnal outputs that show snow as wet in both morning and evening overpasses. The model,
driven by local meteorological data and refined by the assimilated SWE measurements,
presents a continuous representation in space and time of snowpack conditions, extending
information beyond discrete field measurements. This assimilation of the model increases
confidence in S1 diurnal snow conditions interpretation.
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3. Results
3.1. Field Measurements

To provide the seasonal context for our pit measurements and remote sensing re-
sults, we first present relevant environmental variables from nearby SNOTEL sites and
streamflow from the nearby USGS Surface Creek gauge. We next share a narrative of
researcher-experienced meteorological and snowpack conditions during the snow sea-
son, along with snow temperature and wetness measured in the field. After providing
results of Sentinel-1 diurnal snow conditions and SnowModel outputs, we offer an inte-
grated and complementary perspective of snowpack conditions and associated S1 diurnal
interpretations.

3.1.1. Environmental Variables

In order to specify snow accumulation and ablation seasons, select environmental
variables from the Mesa Lakes and Park Reservoir SNOTEL sites and streamflow from
the nearby USGS Surface Creek gauge are shown in Figure 4. Mean daily temperatures
(Figure 4, red) were mostly below freezing in December through February. In March, mean
temperatures oscillated above and below freezing. A significant snow storm arrived in the
third week of March (Figure 4, grey), which coincided with a reduction in temperatures.
Both SNOTEL sites show a local SWE maximum in early April (31 cm at Mesa Lakes, 52 cm
w.e. at Park Reservoir), and runoff (Figure 4, cyan) began shortly thereafter, coinciding with
mean temperatures above freezing. However, runoff stalled as a snowstorm and a decrease
in temperatures occurred in mid-April. Maximum SWE at the Park Reservoir SNOTEL
calculates about 54 cm w.e. on 22–26 April. In late April and early May, temperatures
remained significantly above freezing. This coincided with an uninterrupted reduction in
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SWE and a corresponding increase in runoff. Sustained seasonal runoff (above 1 m3·s−1)
is identified at the USGS Surface Creek stream gauge starting on 24 April (dotted line).
Snow melt-out takes place on May 10 at Mesa Lakes and 3 June 2020, at Park Reservoir
SNOTEL sites.
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Figure 4. Mean daily temperature, precipitation, and accumulated SWE from Mesa Lakes Snotel site,
accumulated SWE from the Park Reservoir Snotel site, and daily maximum streamflow measured
from USGS Surface Creek gauge. Mean temperature (red) and SWE (blues) values are on the left axis
scale; maximum daily streamflow (cyan) and incoming precipitation (grey bars) values are on the
right axis scale.

3.1.2. Snow Pit Measurements

Figure 5 shows measurements of snowpack temperature (Figure 5A,B) and wetness
(Figure 5C,D), with depth and over time. For comparison, morning and afternoon measure-
ments are separated on the top and bottom rows, respectively.

The snowpack remained dry, with sub-freezing temperatures at the surface and with
depth, throughout the winter season (December through February) until early March, when
above-freezing temperatures and sunny conditions coincided with the first signs of surface
melt and snowpack warming. For the first two weeks of March, surface moisture was
noted by researchers in both morning and afternoon snow pits in the topmost stratigraphic
layers of the snowpack; however, only afternoon measurements showed snow surface
temperatures near 0 ◦C. In the third week of March, air temperatures dropped and snow fell;
surface melt ceased. Beginning in early April, air temperatures increased and significant
melt-freeze cycles took place over a rapidly warming and ripening snowpack. On 9
April, significant melt/freeze crusts, ice pipes, and ice lenses on the order of several
centimeters within the top 40 cm of the snowpack in morning measurements were noted;
evening measurements recorded the snow as wet or moist throughout the depth of the
snowpack, though some layers were still subfreezing. In mid-April, incoming snow added
significant cold content to the snowpack and coincided with a decrease in air and snowpack
temperatures. Melt resumed in the third week of April, and the snowpack rapidly warmed
and ripened again. Researchers noted wetness in the snowpack ranging from moist to very
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wet on the afternoons of 21 and 22 April, though some layers still measured subfreezing
temperatures. In early May, melt-out was well underway; a 15 cm melt/freeze crust, which
required a snow saw to excavate, had developed over a wet and isothermal snowpack on
the morning of 3 May; this crust rapidly warmed and melted that afternoon. Researchers
were not present for snowpack melt-out.
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With these field measurements in mind, we identify the snowpack warming phase
primarily taking place in March, when the bulk snowpack temperatures increased relative
to January and February temperatures and surface melt, typically in the top 10 cm of the
snowpack, was initiated. We identify snowpack ripening developing rapidly in April,
where bulk snow temperatures were at or very near 0 ◦C and the snow was noted as
dry throughout the depth of the snowpack in morning pits, and wetness ranged from
moist to very wet throughout the depth of the snowpack in afternoon measurements. A
ripe snowpack contributing to runoff is identified in May measurements, with morning
measurements showing bulk temperatures at −0.2 ◦C (beneath a sub-freezing refrozen
surface crust) and wetness measurements ranging from wet to very wet in both morning
and afternoon pit measurements. It may be noted that these identified phases are general-
izations of complex and variable processes at the boundary of and within the snowpack;
in both mid-March as well as mid-April, snowstorms added significant cold content to
the snowpack and cloudy skies and reduced air temperatures impacted the snow surface
energy budget.

3.2. SnowModel

To explore simulated snow conditions, we first present SnowModel output variables
at a primary Pathfinder measurement site location on the northwestern lobe of Grand
Mesa (Figure 1, yellow), to compare with SNOTEL environmental variables in Figure 4 and
field-measurement indications of the snowpack phase in Figure 5.
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Figure 6 shows relevant SnowModel variables at the Mesa West Pathfinder measure-
ment site throughout the 2020 snow season. At this site, SWE (Figure 6, blue) increased
throughout the winter until early April and reached a maximum of 49 cm w.e. on 20
April. A comparison of simulated and observed SWE measurements may be found in
Figure S1, which calculated an adjusted R-squared of 0.87. Minimal surface melt was
calculated on a few days in February; minor surface melt (less than 0.5 cm) was generated
throughout March and more significantly (greater than 0.5 cm) in early April (Figure 6,
orange). Beginning 10 April, the snowpack ripened and runoff began, coinciding with a
slight decrease in SWE. However, on 12 April runoff ceased as air temperatures decreased
and snow fell, adding cold content to the snowpack. In the third week of April, significant
surface melt was generated; runoff from the snowpack (Figure 6, cyan) was sustained
starting 21 April. Snowpack melt-out at this location occurred on 16 May. Comparing these
outputs with field measurements, we conclude that snowpack warming in March took
place when surface snowmelt of less than 0.5 cm was simulated. Melt over 0.5 cm, which
took place starting in April, we associate with the ripening phase. SnowModel calculated
runoff from the snowpack briefly from 10–11 April, and then again starting on 21 April; the
snowpack runoff phase is identified beginning on this date.
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Figure 6. SnowModel calculated air temperature and SWE (left axis), melt, and runoff (right axis) at
the Mesa West Pathfinder study site (Figure 1, yellow) on the northwestern lobe of Grand Mesa.

3.3. Sentinel-1

To provide a framework for algorithms and thresholds used in S1 diurnal comparisons,
we first explore S1 co- and cross-polarized backscatter values from July 2019–June 2020 for
two focus landcover areas: grassland/herbaceous, and evergreen (focus areas labeled in
Figure 1). These analyses, with field measurements and SnowModel indications of snow
conditions throughout the season, are used to inform our selected algorithm and threshold,
which we then use to present and assess a seasonal diurnal S1 snow conditions time series.
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3.3.1. Land Cover Backscatter Values

Figure 7 shows backscatter values over time for two dominant landcover classes on
Grand Mesa: grassland (Figure 7A,B, 1843 pixels) and evergreen (Figure 7C,D, 2005 pixels).
These are differentiated according to co- and cross-polarizations (top and bottom rows,
respectively) for each landcover. We highlight time periods where field measurements and
SnowModel outputs indicated a dry winter snowpack (Figure 7, dark blue box), surface
melt/freeze cycles over a warming snowpack (Figure 7, light blue box), surface melt/freeze
cycles over a ripening snowpack (Figure 7, orange box), and surface melt/freeze over a ripe
snowpack contributing to runoff (Figure 6, cyan box), as discussed in Sections 3.1.2 and 3.2.
For grassland cover, both co- and cross-polarizations showed consistent values for morning
and evening overpasses in the months of December through February (Figure 7A,B, dark
blue box). During snowpack warming and initial surface melt/freeze in March, neither
orbital pass nor polarization showed a noticeable change in backscatter (Figure 7A,B, light
blue box). Grassland co-polarized (VV) backscatter values in the morning measured a
significant increase during surface melt/freeze cycles over a ripening snowpack, a me-
dian of 1.8 (±1.2) dB and 1.5 (±1.5) dB on 9 April and 21 April, respectively (Figure 7A,
orange box). Morning VV backscatter values decreased for surface melt/freeze over a
ripe snowpack (3 May acquisition) by −1.5 (±1.3) dB (Figure 7A, cyan box). Evening VV
backscatter values showed significant decreases throughout the ripening and runoff phases
of the snowpack, the most significant of which calculated a median of −7.5 (±1.3) dB on
the evening of 21 April, a median diurnal difference of −9 dB (Figure 7A, orange box).
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Figure 7. Sentinel-1 (S1) backscatter values over time for (A) Grassland cover, co-polarized; (B) Grass-
land cover, cross-polarized; (C) Evergreen cover, co-polarized; and (D) Evergreen cover, cross-
polarized. Morning and evening values are differentiated according to color shade. Colored box
outlines indicate the field measurement-determined periods of cold, dry winter snowpacks (dark
blue), surface melt/freeze cycles over a warming snowpack (light blue), surface melt/freeze cy-
cles over a ripening snowpack (orange), and surface melt/freeze over a ripe snowpack (cyan).
Co-polarized plots (top row) have a different y-axis scale than cross-polarized plots (bottom row).
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Morning VH backscatter values did not show a noticeable difference during snow-
pack warming, ripening, or runoff phases (Figure 7B, light blue, orange, and cyan boxes,
respectively). Evening VH backscatter values decreased slightly (−0.2 to −1.2 dB) during
the afternoon melt for the snowpack ripening and runoff phases.

Snowpack melt-out in mid-May coincided with an increase in backscatter values
for both co- and cross-polarized values for both morning and evening overpasses. As
backscatter values were most consistent in dry snow conditions (December and January),
images from this timeframe were subsequently selected to create the reference image used
for threshold algorithms.

Evergreen backscatter values did not show distinct changes during snowpack surface
melt/freeze cycles, warming, or ripening (Figure 7C,D). Evening VH backscatter values
were variable throughout the snow accumulation and ablation seasons. Because of the
indistinct backscatter responses to different snowpack conditions, as well as the potential
for inter-image backscatter variability (with tree branches and needle sizes on the order of
C-band wavelength, 5–6 cm), and also a significant difference in boundary energy fluxes for
canopy snow compared to snow on the ground, we constrained S1 and snow pit analyses
solely to areas without tree cover.

From these analyses, which show less sensitivity of cross-polarized backscatter to sur-
face melt and refreeze compared to co-polarized backscatter, along with results from testing
the threshold algorithm outputs for multiple threshold algorithms listed in Section 2.3.2
(see Appendices A and B), we selected a co-polarized −2 dB threshold algorithm to explore
S1 diurnal snow conditions throughout the snow season of 2020.

3.3.2. Sentinel-1 Diurnal Wet Snow

Figure 8 shows the S1 diurnal snow conditions time series from 28 January to 3 May
2020. Images from overpass dates with coincident field measurements indicate pit locations.
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March; (E) 16 March; (F) 28 March; (G) 9 April; (H) 21 April; and (I) 3 May 2020. S1 overpass dates
with coincident field measurements show pit locations.
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S1 diurnal snow conditions remained dry throughout the winter until 16 March, when
some pixels on the southern and south facing, lower elevation edge of the Mesa showed
signals of melt/freeze (Figure 8E, southwest lobe). In April, surface melt/freeze cycles were
prevalent on the western lobes of the Mesa, with pixels classified as dry in the morning
and wet in the evening S1 overpasses (Figure 8G,H). On 3 May, many pixels were classified
as wet in both morning and evening overpasses, though some pixels on the northwest
lobe of the Mesa were classified as dry in the morning and wet in the evening (Figure 8I).
From backscatter analyses and diurnal snow condition outputs, we infer that S1 diurnal
wet snow methods were insensitive to the initial snowpack warming phase in March. In
April, during snowpack ripening with significant surface melt/freeze, Figure 8G,H shows
a diurnal difference in S1 SAR snow conditions (orange). During the runoff phase, many
pixels were determined ‘wet’ in both morning and evening overpasses (Figure 8I, cyan).

3.4. Integration

In the following sections, we provide an integration of field measurements and Snow-
Model simulated snow conditions, which we utilize to interpret S1 diurnal backscatter
response and derived snow conditions.

3.4.1. Snowpack Phases and S1 Backscatter

Figure 9 compares field measurements of temperature and wetness (Figure 9, top row)
with S1 ratio values (Figure 9, middle row for easy comparison) as well as SnowModel
output variables, such as SWE, air temperature, net radiation, and snowpack melt and
runoff (Figure 9, bottom row). Comparisons are made from 4 March to 15 May 2020.
These are separated by morning and afternoon timeframes (Figure 9A,B, respectively).
Snowpack phases of warming, ripening, and runoff, determined from field measurement
and SnowModel outputs, are highlighted on the x-axes (Figure 9 light blue, orange, and
cyan, respectively). Though field measurements were taken in between S1 overpass dates,
only coincident measurements are shown for clarity.

Figure 9 highlights significant differences in both field-measured and SnowModel
estimated snow conditions (and associated net radiation), in between morning and after-
noon timeframes as well as through identified snowpack phases of warming, ripening,
and runoff. The comparative figure clearly indicates that the S1 backscatter ratio, in both
morning and evening overpasses, is not sensitive to snowpack warming and minor surface
melt (less than 0.35 cm) in March. During snowpack ripening in April, with significant
surface melt/freeze cycles, morning S1 backscatter increased by medians of 1.8 and 1.5 dB,
and afternoon backscatter decreased, with median changes of −3.4 and −7.5 dB. During the
runoff phase on 3 May, both S1 morning and evening backscatter values decreased, with me-
dian changes of −1.5 and −3.0 dB, respectively. S1 diurnal responses in backscatter provide
distinct indications of snowpack phase conditions during ripening and runoff phases.
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Figure 9. Snow conditions integration panel for (A) morning and (B) afternoon for in situ mea-
surements of snowpack temperature and wetness (top row), Sentinel-1 ratio values (middle row),
and SnowModel output variables (bottom row) for 4 March–15 May 2020, covering periods of field-
measured snowpack warming, ripening, and runoff (highlighted with light blue, orange, and cyan).

3.4.2. S1 and SnowModel Diurnal Snow Conditions Comparison

Figure 10 compares S1 (Figure 10, top row) and SnowModel (Figure 10, bottom row)
diurnal outputs for three dates in the snowpack warming, ripening, and runoff phases: 16
March, 21 April, and 3 May 2020. Images agree relatively well, with dry and cold snow
conditions identified on 16 March, while pixels on the northern and southern edge of the
Mesa show afternoon melt in SnowModel diurnal outputs, comparable to S1 diurnal pixels
identified as wet in the afternoon on the southern edge of the Mesa. The 21 April diurnal
comparisons showed snow as dry in the morning and melting in the afternoon for both S1
and SnowModel methods, though more pixels were identified as such with SnowModel.
SnowModel diurnal outputs showed the snowpack in the runoff phase on 3 May; S1 diurnal
outputs identified many pixels as wet in both morning and evening overpasses, although
some were considered dry in the morning and wet in the afternoon.
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Figure 10. Diurnal snow conditions comparison between Sentinel-1 (top row) and SnowModel
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4. Discussion
4.1. Field Measurements
4.1.1. Environmental Variables

The Mesa Lakes SNOTEL SWE pillow consistently measured less SWE than was
measured in the field, while the Park Reservoir SNOTEL site maximum SWE was greater
than was measured in the field. Aside from heterogeneity in snow accumulation patterns
due to precipitation variability and differing topography and land cover, research has
shown inconsistencies between SNOTEL SWE pillow measurements and both accumulated
precipitation measurements as well as snow course measurements, especially at higher
elevation Rocky Mountain sites (e.g., [63,64]). Both SNOTEL sites showed reductions in
SWE in early April, then increasing SWE in mid-April with incoming snow and lower
air temperatures; finally reducing consistently beginning the third week of April, 2020.
While snowpack warming, ripening, and runoff can be highly variable in space and time,
comparing SNOTEL variables with field measurements generally indicated a similar timing
for brief runoff initiation in early April, stalling in mid-April, and then becoming isothermal
again on 21 April, after which melt-out began in earnest. This timing is corroborated by the
USGS Surface Creek streamflow measurement (Figure 4, cyan).

4.1.2. Snow Pit Measurements

Field measurements of snow temperatures, with depth and over time, are in line with
what may be expected as a winter snowpack warms and ripens. Surface temperatures point
to the interaction of the snow surface with atmospheric energy fluxes, as well as energy
exchange within the snowpack. For the afternoon snow pit measurements, occasionally,
snow surface temperature had already cooled again, while subsurface temperatures were
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warmer, indicating the negative energy flux to the atmosphere had not yet cooled these
subsurface layers (Figure 5D: 15 March–1 April afternoon temperatures).

Field measurements of snow wetness correlate well with snowpack temperature
measurements throughout the snow season, with moisture first noted at the snow surface
and wetness increasing over time, first at the surface and then with depth. It may be noted
that in early to mid-March, field researchers described morning surface snow layers as
moist when air temperatures and snow surface temperatures were below freezing. This
may point to the subjective nature of snow wetness measurements and may also point to
conditions where the available surface meltwater generated has not yet refrozen. For these
dates, SnowModel outputs showed snowmelt was generated in the 9:00–12:00 timeframe,
indicating that energy for melt was available in the morning hours.

Assessing snow wetness as snow approaches the melting point is a difficult task, with
or without instrumentation. Though A2 WISe-derived LWC values were variable, they
ranged from 0 to 0.5% for ‘dry’ snow, 0–2% for ‘moist’ snow, and 0–5% for ‘wet’ snow. ‘Very
wet’ snow accumulated at specific horizons in the snowpack that were not in line with
permittivity measurement intervals and, thus, did not correlate with the LWC range.

4.2. SnowModel

SnowModel, driven with local meteorological data and refined with SWE measure-
ments, provided continuous indications of snow conditions that were also spatially dis-
tributed. We note that, aside from assimilating SWE measurements in SnowModel, other
field measurements were not incorporated into the model. With that in mind, the timing
for snowpack warming, ripening, and runoff aligns very well with in situ measurements,
facilitating greater confidence in S1 SAR diurnal interpretation. While the maximum SWE
value in SnowModel compared well with field measurement (48 and 49 cm w.e., respec-
tively), the timing of maximum SWE differed from that of the Mesa Lakes SNOTEL as well
as field-measured maximum SWE. Maximum SWE for the nearby Park Reservoir SNO-
TEL site, further east on the Mesa, takes place on 22–26 April 2020; thus, the SnowModel
maximum SWE timing is comparable to those seen elsewhere on the Mesa.

SnowModel also accurately represented the snow surface state throughout the season,
and detected afternoon surface melt in the snowpack warming phase, corroborated with
field measurements, when S1 SAR did not. As such, SnowModel offers insight into the
capacities and limitations of wet snow detection with S1 SAR. As it is physically-based,
it also affords exploration into potential driving factors behind snow surface states, as is
indicated in Figure 9; surface melt was associated with air temperatures above freezing as
well as increased net radiative inputs.

4.3. Sentinel-1
4.3.1. Land Cover Backscatter Values

Surface melt/freeze cycles during snowpack warming in March were not evident in
morning or evening S1 backscatter values for grassland/herbaceous landcover (Figure 7A,B,
light blue box). As the overpass time is around 7:00 and 19:00, it is likely that melt had
not yet been generated in the morning acquisition (as is corroborated by SnowModel
outputs), and may have already refrozen by the evening acquisition. It is also possible
that not enough surface melt was generated to significantly attenuate the S1 signal for
these overpass dates. Afternoon pit measurements for this time period reported melt in
the top 2–3 cm of the snowpack; SnowModel calculated up to about 0.35 cm snow melt.
Due to constraints with travel and daylight, especially early in the melt season with fewer
daylight hours, pit measurements were always taken after morning and before evening S1
overpasses; for this reason, the presence (or lack) of meltwater at the snow surface in these
early March evening overpasses was not confirmed with field measurement.

Significant surface melt/freeze cycles that took place during snowpack ripening in
April were associated with a significant increase in VV backscatter values, with median
increases of 1.8 and 1.5 dB (Figure 7A, orange box). As was mentioned in Section 1.3.1,
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refrozen crusts cause an increase in backscatter due to the high volumetric scattering and
reflection of large refrozen grains, pipes, and lenses [30,34–37]; our results corroborate this
conclusion. To our knowledge, thresholds have not been identified or indicated for positive
morning backscatter ratios. From our focused study, we conclude that a +1 dB threshold for
morning ratios may not only confirm that the snowpack is not wet in the morning, but also
that significant surface melt/freeze is taking place over a not-yet-ripe snowpack, leading to
high volumetric scattering which contributes significantly to the backscatter value.

We hypothesize that the co-polarized backscatter ratio value of −1.5 dB for the morn-
ing S1 overpass of 3 May, field conditions which indicated a consolidated and relatively
homogeneous melt/freeze crust ~15 cm thick over a wet snowpack, was impacted by both
the surface melt/freeze crust as well as the moisture of the snow underneath (Figure 7A,
cyan box). The ratio value on 3 May for many pixels on the Mesa was near the −2 dB thresh-
old for identifying wet snow (and as such, many pixels in the study area were identified as
wet in the morning and evening overpasses). It also calculated a mean decrease of about
−3.0 dB from the preceding S1 overpass on 21 April, indicating a significant change in
scattering characteristics between acquisitions. From these observations, we postulate that
it may be possible to identify surface melt/freeze crusts over an otherwise ripe snowpack
by imposing a different ratio threshold for morning overpasses. Because snow melt-out
occurred before snow surface conditions were wet in both morning and evening overpasses,
this potential morning threshold requires further testing for conclusions to be drawn.

Evening co-polarized backscatter values showed a significant decrease in April and
early May, the most significant of which took place on 21 April (Figure 7A, orange and cyan
boxes). The authors of [32], studying snowmelt using S1 in the European Alps, identified
the most negative backscatter values with the end of the snowpack ripening phase and the
initiation of runoff; based on field measurements, SnowModel outputs, and USGS stream
gauge values, this study corroborates their findings.

As melt-out took place and SWE reduced, evening backscatter values began to increase
after the 21 April acquisition, with snow-free dates identified by 15 May, indicated by
backscatter ratios for both morning and evening overpasses well above 0 dB (Figure 7A,B).
SnowModel outputs confirm this timing.

VH backscatter values decreased slightly for evening overpasses during April and
early May, although much less significantly (0 to −1.2 dB) than VV backscatter values
(Figure 7B). VH backscatter values for Grand Mesa were quite low throughout the winter
season; the noise equivalent radar cross-section, a limit to the radar cross-section that
can be measured, ranges from −22 to −30 dB (σ0) for Sentinel-1 interferometric wide
swath (IW) cross-polarized backscatter [65]. As cross-polarized backscatter values for grass-
land/herbaceous land cover on Grand Mesa averaged about −21 dB in the summer and
−25 dB in the winter (γ0), it is feasible that the noise equivalent radar cross-section limits
the capacity for cross-polarized backscatter values to reliably detect a wet snowpack at this
location. From this observation, we recommend selecting reference images, polarizations,
and thresholds based on individual site characteristics; various land cover and soil moisture
conditions may impact reference image backscatter values, and should be considered on
site-specific bases.

4.3.2. S1 Diurnal Wet Snow

S1 diurnal snow conditions, when viewed on a seasonal and spatial basis, match
what might be expected for changes in snow surface states as the snowpack warms and
ripens. These diurnal changes corroborate other studies exploring diurnal S1 snow wetness
differences [32,38].

Field measurements and SnowModel outputs from this study described snowpack
warming beginning in March on the Mesa top, which S1 did not detect in morning or
evening overpasses. Snowpack ripening developed rapidly in April S1 overpasses, which
S1 diurnal snow conditions maps captured well and were associated with an increase
in morning backscatter values and a decrease in evening ratio values below the −2 dB
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threshold. The S1 diurnal image on 3 May, with both morning and evening ratio values
near or below the −2 dB threshold for much of the Mesa, indicated a snowpack that was
ripe and contributing to runoff, although overnight surface refreeze needed to be overcome
before runoff resumed. With this comparison in mind, we conclude that S1 diurnal snow
conditions on Grand Mesa 2020 did not detect the snowpack warming phase, but that the
snowpack ripening phase on Grand Mesa was clearly identified with an increase in morning
backscatter and a decrease in evening backscatter ratio values in April. A ripe snowpack
contributing to runoff was also identified with our S1 diurnal snow conditions approach in
May, and there may be potential for morning-specific backscatter ratio thresholds to identify
surface melt/freeze over a ripe snowpack; however, this sensitivity must be explored at
a range of sites with different environmental conditions to be better understood. Our
conclusions are comparable to those found in [32], but differ in that we find the snowpack
warming phase is undetected by S1 threshold techniques at this location.

We conclude that S1 C-band SAR interaction with the snowpack at multiple interfaces
may be utilized to estimate both snow surface states as well as the energetic status of the
snowpack underneath. This sensitivity may be leveraged and interpreted with site-specific
knowledge, including backscatter variability throughout the year associated with snow
states, ground cover, seasonal ground cover changes, and soil moisture. The potential for
S1 diurnal snow conditions maps to provide spatially explicit information with which to
compare to energy balance or runoff forecasting model outputs may be especially useful in
snow-fed catchments where measurement is sparse and/or terrain is varied.

4.4. Integration

The comparison of field measurements with physically-based SnowModel outputs,
along with the topographic uniformity on Grand Mesa, offers complementary and corrobo-
rative insight into snow surface states and bulk status throughout the 2020 snow season
(Figure 9). This complementary and corroborative insight into snow conditions facilitates
the interpretation of S1 diurnal snow conditions at this location.

S1 and SnowModel diurnal snow conditions maps (Figure 10) compare relatively well.
On 16 March and 21 April, more pixels are shown as wet in the afternoon for SnowModel
diurnal outputs. This may be due to the S1 evening overpass time, which is approximately
19:00 Mountain Daylight Time. SnowModel surface melt calculations were from the nearest
(15:00–18:00) timestep, which may show differences in melt/refreeze timing. On 3 May,
more pixels are shown as wet in both morning and evening for SnowModel diurnal outputs.
These differences may be due to a couple of potential causes, both discussed in Section 4.3.1:
(1) As snow melt-out takes place, S1 backscatter values increase; on the 3 May image, pixels
not categorized as wet in either morning or evening overpasses generally calculate less
than 10 cm SWE in SnowModel outputs. (2) Pixels categorized as dry in the morning and
wet in the evening may be due to backscatter values that are impacted by both the 15 cm
surface melt/freeze crust, as well as the bulk snow moisture underneath.

5. Conclusions

We utilized over 50 snow pit measurements from three related NASA SnowEx cam-
paigns on Grand Mesa, Colorado, during the 2020 snow season to track snow conditions,
such as temperature and wetness, with depth and over time, as the winter snowpack
warmed and ripened.

SWE measurements from Grand Mesa were also assimilated in the physically-based
SnowModel over the 2020 snow season. The model provided a spatially distributed,
temporally continuous, independent indication of snow conditions that agreed well with
field measurements.

These comparative datasets facilitate the interpretation of Sentinel-1 SAR backscatter
values over time. Early melt season surface melt/freeze during the warming phase, with
0 to 0.35 cm of melt calculated by SnowModel, was not associated with any significant
change in morning or evening S1 backscatter values in co- or cross-polarizations. Co-
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polarized S1 SAR backscatter showed sensitivity to significant surface melt/freeze, as well
as the status of the underlying snowpack, during snowpack ripening and runoff phases.
Significant melt/freeze crusts overlying a ripening snowpack, noted with crusts, pipes,
and lenses present in the snowpack, were associated with a median increase in morning
backscatter values from dry snow reference values of 1.8 (±1.2) dB and 1.5 (±1.5) dB. In
contrast, a consolidated melt/freeze crust of 15 cm overlying an otherwise ripe snowpack
was associated with a median decrease in morning backscatter values of −1.5 (±1.3) dB.
During the afternoon snow surface melt in ripening and runoff phases, evening backscatter
values decreased significantly, the most pronounced of which was a median of −7.5 (±1.3)
dB on 21 April, after which runoff initiated as confirmed by SnowModel outputs and
corroborated by the nearby USGS Surface Creek gauge. Snowpack melt-out resulted in
a significant increase in both morning and evening backscatter values in both co- and
cross-polarizations. Cross-polarized backscatter values on Grand Mesa were less sensitive
to morning melt/freeze cycles, as well as to afternoon surface melt.

This S1 diurnal snow conditions approach may be useful in remote and/or mountain-
ous terrain where sparse measurement hinders knowledge of conditions at the catchment
scale and introduces uncertainty in modeling efforts. Integrating field measurements with
physically-based snow modeling modalities facilitates the interpretation and application of
remotely sensed data, as well as offers complementary perspectives on snow conditions
and their potential drivers.
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Appendix A

Figure A1 explores S1 ratio values over time for four threshold approaches: (A) Co-
polarized (VV) −2 dB and −3 dB thresholds; (B) cross-polarized (VH) −2 dB and −3 dB
thresholds; (C) the co-/cross-polarized −2 dB threshold from [34]; and D) the co-/cross-
polarized −1.2 dB threshold from [33]. As in Figure 7, we highlight time periods of field
measurements with a dry winter snowpack (Figure A1, dark blue box), surface melt/freeze
cycles over a warming snowpack (Figure A1, light blue box), surface melt/freeze over a
ripening snowpack (Figure A1, orange box), and surface melt/freeze cycles over a ripe
snowpack (Figure A1, cyan box).
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values remaining stable). April 21 showed an increase in morning ratio values, as well as 
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Figure A1. S1 ratio values over time for grassland cover focus area. (A) VV; (B) VH; (C) [33] co-
/cross-polarized; and (D) [32] co-/cross-polarized ratio approaches. Morning and evening values
are differentiated according to color shade. Dotted and dashed lines indicate threshold values of
−1.2 dB ([33]; dashed line), −2 dB ([34]; dotted line), and −3 dB ([21]; dotted-dashed line). Colored
box outlines indicate field measurement-determined periods of a cold, dry winter snowpack (dark
blue), surface melt/freeze cycles over a warming snowpack (light blue), surface melt/freeze cycles
over a ripening snowpack (orange), and surface melt/freeze cycles over a ripe snowpack (cyan).

Co-polarized ratio values (Figure A1A) remained stable from December through
March; beginning in April, morning ratios increased and evening ratios decreased signifi-
cantly; a −2 dB threshold dictates some outlying pixels as wet during the winter months,
but identifies more pixels as wet during melt freeze cycles over a warming, ripening, and
ripe snowpack.



Remote Sens. 2022, 14, 4002 24 of 28

Cross-polarized ratio values (Figure A1B) also remained stable December through
March. As significant surface melt freeze cycles took place through April, there was a slight
decrease in evening ratios (but well above the −2 dB threshold) and a significant increase
in morning ratio values only for the 21 April overpass (Figure A1B, orange box). While
ratio values decreased for both morning and evening overpasses on 3 May, they were still
mostly above the −2 dB threshold.

Co-/cross-polarized ratio values from [34] also remained stable December through
March (Figure A1C, blue box). The integration of cross-polarized ratio values led to slightly
less sensitivity to wet snow in the 9 April evening overpass (and morning ratio values
remaining stable). 21 April showed an increase in morning ratio values, as well as a
significant decrease in evening ratio values, well below the −2 dB threshold (Figure A1C,
orange box). On 3 May, both morning and evening ratio values show a noticeable decrease,
though only partially below the −2 dB threshold (Figure A1C, cyan box).

Co-/cross-polarized ratio values from [33] also remained stable December through
March, with a tighter distribution compared to other ratios (Figure A1D, dark blue box).
Significant surface melt/freeze cycles in April resulted in an increase in morning ratios,
and a significant decrease in evening ratios (Figure A1D, orange box). Both morning and
evening ratios decreased on 3 May (Figure A1D, cyan box).

We note that not every processing step was matched with [33,34]. To account for this,
we compared these threshold algorithms using different reference images (from snow-free
summer months in August and September, as well as a combination of snow-free and dry
snow images from August to September and December to January); we also tested these
threshold algorithms using local incidence angle normalized sigma nought (σ0) backscatter
values. Incorporating snow-free images into the reference image resulted in ratio values
for (B), (C), and (D) that fell below threshold values throughout the winter season, likely
due to the large difference in snow-free versus dry snow cross-polarized ratio values
(Figure 7). Utilizing σ0 backscatter values did not alter the conclusions drawn in threshold
comparison.

From these results, as well as the results from testing the threshold algorithm outputs
for S1 diurnal snow conditions (see Figure A2), and keeping field measurement results in
mind, we selected the co-polarized −2 dB threshold algorithm to explore S1 diurnal snow
conditions throughout the snow season of 2020.

Appendix B

S1 diurnal wet snow identification algorithm comparison is shown in Figure A2, for
four select dates through the 2020 snow season. Results from the focus area backscatter and
ratio values over time inform our algorithm comparison: we compare (1) a co-polarized
−2 dB threshold (Figure A2, top row, hereafter referred to as ‘co-polarized,’) with (2) the
integrated co-/cross-polarized algorithm developed by [34] using Sentinel-1 data in the
European Alps and Iceland (Figure A2, middle row, hereafter referred to as ‘Nagler’) and
(3) the integrated co-/cross-polarized algorithm developed by [33] using Sentinel-1 data
on Grand Mesa (Figure A2, bottom row, hereafter referred to as ‘Manickam’). The dates
shown are 28 January (a cold winter snowpack), 16 March (minor surface melt/freeze
over a warming snowpack), 9 April (strong surface melt/freeze cycles over a ripening
snowpack), and 3 May (strong surface melt/freeze cycles over a ripe snowpack in the
runoff phase), shown in Figure A2A–D, respectively. Algorithm outputs are very similar for
a cold winter snowpack, as well as minor surface melt/freeze over a warming snowpack
(Figure A2A,B, respectively); melt is not detected on either date for any algorithm. For
significant melt/freeze over a ripening snowpack (Figure A2C), co-polarized and Manickam
algorithms (top and bottom rows, respectively) classify more pixels as wet in the evening
overpass; the Nagler algorithm (middle row) shows less sensitivity to snow wetness. For
significant melt/freeze over a ripe snowpack (Figure A2D), the co-polarized threshold
algorithm (Figure A2D, top row) identifies many pixels as wet both in morning and evening
S1 overpasses. The Nagler and Manickam algorithms (Figure A2D, middle and bottom
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rows, respectively) are less sensitive to wetness in both overpasses, particularly in the
morning overpass for the Nagler algorithm. With this algorithm threshold comparison, and
field measurement results in mind, we select the co-polarized −2 dB threshold algorithm
to explore S1 diurnal snow conditions throughout the snow season of 2020.
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We note that not every processing step is matched with [33,34]. To account for this,
we also compare these threshold algorithms using different reference images (from-snow
free summer months in August and September, as well as a combination of snow-free and
dry snow images from August to September and December to January); we also test these
threshold algorithms using local incidence angle normalized sigma nought (σ0) backscatter
values. Incorporating snow-free images into the reference image results in ratio values
that fall below threshold values throughout the winter season, likely due to the large
difference in snow-free versus dry snow cross-polarized ratio values (Figure 7). Utilizing
σ0 backscatter values does not alter the conclusions drawn in the threshold comparison.
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