Stable Regional Reference Frame for Reclaimed Land Subsidence Study in East China
Abstract
:1. Introduction
2. Methods
2.1. Data Processing
2.2. Helmert Transformation and Minimum Constraint
2.3. Core Station Selection
3. Stability Analysis of SHRRF
3.1. Origin and Scale Temporal Behavior
3.2. The RMSE of SHCORS Instantaneous Solutions
4. Applications
4.1. Velocity of SHCORS
4.2. Reclaimed Coast−Land Subsidence Study
4.2.1. GNSS Monitoring Network
4.2.2. Consolidation Settlement Model under Self−weight
4.2.3. Verification of the Consolidation Settlement Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, L.; Yang, T.; Zhao, Q.; Liu, M.; Pepe, A. The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO−SkyMed/Sentinel−1 DInSAR Analysis. Remote Sens. 2017, 9, 1194. [Google Scholar] [CrossRef]
- Shen, S.L. Geological environmental character of Lin Gang New City and its influences to the construction. Shanghai Geol. 2008, 105, 24–28. (In Chinese) [Google Scholar]
- Xu, J.J.; Chen, Y. Research on reclamation of Nanhui Dongtan Based on RS and GIS. Shanghai Land Resources 2011, 32, 18–22. (In Chinese) [Google Scholar]
- Tosi, L.; Teatini, P.; Carbognin, L.; Frankenfield, J. A new project to monitor land subsidence in the northern Venice coastland (Italy). Environ. Geol. 2007, 52, 889–898. [Google Scholar] [CrossRef]
- Cenni, N.; Viti, M.; Baldi, P.; Mantovani, E.; Vannucchi, A. Present vertical movements in Central and Northern Italy from GPS data: Possible role of natural and anthropogenic causes. J. Geodyn. 2013, 71, 74–85. [Google Scholar] [CrossRef]
- Avsar, N.B.; Jin, S.G.; Kutoglu, H.; Gürbüz, G. Vertical Land Motion Along the Black Sea Coast from Satellite Altimetry, Tide Gauges and GPS. Adv. Space Res. 2017, 60, 2871–2881. [Google Scholar] [CrossRef]
- Floris, M.; Fontana, A.; Tessari, G.; Mulè, M. Subsidence Zonation Through Satellite Interferometry in Coastal Plain Environments of NE Italy: A Possible Tool for Geological and Geomorphological Mapping in Urban Areas. Remote Sens. 2019, 11, 165. [Google Scholar] [CrossRef]
- Blackwell, E.; Shirzaei, M.; Ojha, C.; Werth, S. Tracking California’s sinking coast from space: Implications for relative sea−level rise. Sci. Adv. 2020, 6, eaba4551. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, G.; Wang, K.; Liu, H.; Lyu, H.; Turco, M.J. Rates of Natural Subsidence along the Texas Coast Derived from GPS and Tide Gauge Measurements (1904–2020). J. Surv. Eng. 2021, 147, 04021020. [Google Scholar] [CrossRef]
- Haley, M.; Ahmed, M.; Gebremichael, E.; Murgulet, D.; Starek, M. Land Subsidence in the Texas Coastal Bend: Locations, Rates, Triggers, and Consequences. Remote Sens. 2022, 14, 192. [Google Scholar] [CrossRef]
- Bosy, J. Global, Regional and National Geodetic Reference Frames for Geodesy and Geodynamics. Pure Appl. Geophys. 2014, 171, 783–808. [Google Scholar] [CrossRef]
- Altamimi, Z.; Boucher, C.; Sillard, P. Terrestrial reference frame requirements within GGOS perspective. J. Geodyn. 2005, 40, 363–374. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Legrand, J.; Garayt, B.; Boucher, C.; Sillard, P. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. Solid Earth 2007, 112, B09401. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Blewitt, G.; Kreemer, C.; Hammond, W.; Goldfarb, J.M. Terrestrial Reference Frame NA12 for crustal deformation studies in North America. J. Geodyn. 2013, 72, 11–24. [Google Scholar] [CrossRef]
- Altamimi, Z.; Boucher, C.; Sillard, P. New trends for the realization of the international terrestrial reference system. Adv. Space Res. 2002, 30, 175–184. [Google Scholar] [CrossRef]
- Sanchez, L.; Drewes, H. Crustal deformation and surface kinematics after the 2010 earthquakes in Latin America. J. Geodyn. 2016, 102, 1–23. [Google Scholar] [CrossRef]
- Mazurova, E.M.; Sergei, K.; Aleksandr, K. Development of a terrestrial reference frame in the Russian Federation. Stud. Geophys. Geod. 2017, 61, 616–638. [Google Scholar] [CrossRef]
- Wang, G.; Kearns, T.J.; Yu, J.B.; Saenz, G. A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region. Landslides 2014, 11, 119–129. [Google Scholar] [CrossRef]
- Wang, G.; Bao, Y.; Gan, W.; Geng, J.; Xiao, G.; Shen, S.L. NChina16: A stable geodetic reference frame for geological hazard studies in North China. J. Geodyn. 2018, 115, 10–22. [Google Scholar] [CrossRef]
- Bertiger, W.; Desai, S.D.; Haines, B.; Harvey, N. Single receiver phase ambiguity resolution with GPS data. J. Geod. 2010, 84, 327–337. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.K. Anatomy of apparent seasonal variations from GNSS derived site position time series. J. Geophys. Res. 2002, 107, 9–16. [Google Scholar]
- Nikolaidis, R. Observation of Geodetic and Seismic Deformation with the Global Positioning System. Ph.D. Thesis, University of Calif, San Diego, CA, USA, 2002. [Google Scholar]
- Montillet, J.P.; Bos, M.S. Geodetic Time Series Analysis in Earth Sciences; Springer Geophysics: Berlin/Heidelberg, Germany, 2019; pp. 30–35. [Google Scholar]
- Dong, D.; Fang, P.; Bock, Y.; Webb, F.H. Spatiotemporal filtering using principal component analysis and Karhunen−Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res. Solid Earth 2006, 111, B03405. [Google Scholar] [CrossRef]
- Dong, D.; Yunck, T.; Heflin, M. Origin of the International Terrestrial Reference Frame. J. Geophys. Res. Solid Earth 2007, 108, 2200. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 8, 6109–6131. [Google Scholar] [CrossRef]
- Sillard, P.; Boucher, C. A review of algebraic constraints in terrestrial reference frame datum definition. J. Geod. 2001, 75, 63–73. [Google Scholar] [CrossRef]
- Collilieux, X.; Dam, T.V.; Ray, J.; Coulot, D.; Métivier, L.; Altamimi, Z. Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J. Geod. 2012, 86, 1–14. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2010, 107, ETG 9-1–ETG 9-11. [Google Scholar] [CrossRef]
- Bennett, R.A.; Hreinsdottir, S. Constraints on vertical crustal motion for long baselines in the central Mediterranean region using continuous GPS. Earth Planet. Sci. Lett. 2007, 257, 419–434. [Google Scholar] [CrossRef]
- Klos, A.; Olivares, G.; Teferle, F.N.; Hunegnaw, A.; Bogusz, J. On the combined effect of periodic signals and colored noise on velocity uncertainties. GPS Solut. 2018, 22, 1. [Google Scholar] [CrossRef]
- Zhao, Q.; Pepe, A.; Gao, W.; Zhong, L. A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean−Reclaimed Lands in Shanghai. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1763–1781. [Google Scholar] [CrossRef]
- Ding, J.Z.; Zhao, Q.; Tang, M.C.; Calò, F.; Zamparelli, V.; Falabella, F.; Liu, M.; Pepe, A. On the Characterization and Forecasting of Ground Displacements of Ocean−Reclaimed Lands. Remote Sens. 2020, 12, 2971. [Google Scholar] [CrossRef]
- Yang, P.; Tang, Y.Q.; Zhou, N.Q. Consolidation settlement of Shanghai dredger fill under self−weight using centrifuge modeling test. Cent. South Univ. Technol. 2008, 39, 862–866. (In Chinese) [Google Scholar]
- Levenberg, K. A Method for the Solution of Certain Problems in Least Squares. Int. J. Numer. Method Biomed Eng. 1944, 2, 164–168. [Google Scholar]
- Marquardt, D.W. An Algorithm for Least−Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
ITEM | GAMIT |
---|---|
Choice of experiment | RELEX |
Number of atmospheric gradients | gradient parameters per day (2 NS and 2 EW) |
Troposphere wet zenith delay estimates | VMF1 (2 h) |
Radiation model | BERNE |
Ocean tide model | otl_FES2004 |
Radiation model for ARC | BERNE |
Antenna model | AZEL |
SV antenna model | ELEV |
Elevation cutoff | 10° |
Earth tide model | IERS03 |
ITEM | GAMIT |
---|---|
Time series span | More than 5 years |
Three−dimensional formal error of latest velocity estimate | Less than 0.3 mm/year |
Root mean square of horizontal residual time series | Less than 5 mm |
Root mean square of vertical residual time series | Less than 10 mm |
SP Stations | Standard Deviations (mm) | |
---|---|---|
ITRF14 | SHRRF | |
0018 | 11.46 | 8.97 |
0050 | 30.8 | 9.37 |
dd21 | 12.55 | 9.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Dong, D.; Chen, W.; Zhang, C. Stable Regional Reference Frame for Reclaimed Land Subsidence Study in East China. Remote Sens. 2022, 14, 3984. https://doi.org/10.3390/rs14163984
Peng Y, Dong D, Chen W, Zhang C. Stable Regional Reference Frame for Reclaimed Land Subsidence Study in East China. Remote Sensing. 2022; 14(16):3984. https://doi.org/10.3390/rs14163984
Chicago/Turabian StylePeng, Yu, Danan Dong, Wen Chen, and Chenglong Zhang. 2022. "Stable Regional Reference Frame for Reclaimed Land Subsidence Study in East China" Remote Sensing 14, no. 16: 3984. https://doi.org/10.3390/rs14163984
APA StylePeng, Y., Dong, D., Chen, W., & Zhang, C. (2022). Stable Regional Reference Frame for Reclaimed Land Subsidence Study in East China. Remote Sensing, 14(16), 3984. https://doi.org/10.3390/rs14163984