Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of Spread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Airborne Thermal Infrared (ATIR) Imagery and Processing
2.3. Geospatial Data
2.4. Fire Front, Spread Vector, and Landscape Sampling Unit (LSU) Delineation
2.5. Image Derived Fuel Covariates
2.6. Topographic Data Derived Covariates
2.7. Landscape Covariate Sampling
2.8. Statistical Analyses
3. Results
3.1. Bivariate Relationships
3.2. Spatially Weighted and Filtered Regression
3.3. Machine Learning Regression
4. Discussion and Conclusion
4.1. Significance of Covariates and LSU Size
4.2. Significance of Combined Covariate Findings
4.3. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Eria, L.; Diunugala, N.; Johnson, J.; McClean, C. An Analysis of Effects of San Diego Wildfire on Ambient Air Quality. J. Air Waste Manag. Assoc. 2006, 56, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Haque, K.; Azad, A.K.; Hossain, Y.; Ahmed, T.; Uddin, M.; Hossain, M. Wildfire in Australia during 2019–2020, Its Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. J. Environ. Prot. 2021, 12, 391–414. [Google Scholar] [CrossRef]
- Agee, J.K. The landscape ecology of western forest fire regimes. Northwest Sci. 1998, 72, 24. [Google Scholar]
- Alcasena, F.J.; Salis, M.; Ager, A.A.; Arca, B.; Molina-Terren, D.; Spano, D.; Urdíroz, F.J.A. Assessing Landscape Scale Wildfire Exposure for Highly Valued Resources in a Mediterranean Area. Environ. Manag. 2015, 55, 1200–1216. [Google Scholar] [CrossRef]
- Countryman, C.M. The concept of fire environment. Fire Manag. Today 2004, 64, 49–52. [Google Scholar]
- Albini, F.A. Estimating Wildfire Behavior and Effects; Intermountain Forest and Range Experiment Station General Technical Report; Department of Agriculture, Forest Service: Ogden, UT, USA, 1976. [Google Scholar]
- McKenzie, D.; Miller, C.; Falk, D.A. The Landscape Ecology of Fire; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Coen, J.L. Some new basics of fire behavior. Fire Manag. Today 2011, 71, 37. [Google Scholar]
- Valero, M.M.; Rios, O.; Pastor, E.; Planas, E. Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. Int. J. Wildland Fire 2018, 27, 241. [Google Scholar] [CrossRef]
- Ollero, A.; de Dios, J.R.M.; Merino, L. Unmanned aerial vehicles as tools for forest-fire fighting. For. Ecol. Manag. 2006, 234, S263. [Google Scholar] [CrossRef]
- Stow, D.A.; Riggan, P.J.; Storey, E.A.; Coulter, L.L. Measuring fire spread rates from repeat pass airborne thermal infrared imagery. Remote Sens. Lett. 2014, 5, 803–812. [Google Scholar] [CrossRef]
- Stow, D.; Riggan, P.; Schag, G.; Brewer, W.; Tissell, R.; Coen, J.; Storey, E. Assessing uncertainty and demonstrating potential for estimating fire rate of spread at landscape scales based on time sequential airborne thermal infrared imaging. Int. J. Remote Sens. 2019, 40, 4876–4897. [Google Scholar] [CrossRef]
- Riggan, P.J.; Tissell, R.G.; Hoffman, J.W. Application of the FireMapper thermal-imaging radiometer for wildfire suppression. IEEE Aerosp. Conf. Proc. 2003, 4, 1863–1872. [Google Scholar]
- Schag, G.; Stow, D.; Riggan, P.; Tissell, R.; Coen, J. Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery. Fire 2021, 4, 6. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F.; Sharples, J.J.; Bradstock, R.A. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire 2020, 29, 459–472. [Google Scholar] [CrossRef]
- Storey, E.A.; Stow, D.A.; Roberts, D.A.; O’Leary, J.F.; Davis, F.W. Evaluating Drought Impact on Postfire Recovery of Chaparral Across Southern California. Ecosystems 2021, 24, 806–824. [Google Scholar] [CrossRef]
- Holmes, T.P.; Huggett, R.J.; Westerling, A.L. Statistical analysis of large wildfires. In The Economics of Forest Disturbances; Springer: Dordrecht, The Netherlands, 2008; pp. 59–77. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H. Trends in Wildfire Severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and Southern Cascades, California, USA. Fire Ecol. 2012, 8, 41–57. [Google Scholar] [CrossRef]
- Mirzaei, M.; Bertazzon, S.; Couloigner, I. OLS and GWR LUR models of wildfire smoke using remote sensing and spatiotem-poral data in Alberta. Spat. Knowl. Inf. Can. 2019, 7, 3. [Google Scholar]
- Wagner, H.H.; Fortin, M.-J. Spatial analysis of landscapes: Concepts and statistics. Ecology 2005, 86, 1975–1987. [Google Scholar] [CrossRef]
- Koutsias, N.; Martínez-Fernández, J.; Allgöwer, B. Do Factors Causing Wildfires Vary in Space? Evidence from Geographically Weighted Regression. GIScience Remote Sens. 2010, 47, 221–240. [Google Scholar] [CrossRef]
- Nunes, A.; Lourenço, L.; Castro-Meira, A. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Zhang, L.; Gove, J.H.; Heath, L.S. Spatial residual analysis of six modeling techniques. Ecol. Model. 2005, 186, 154–177. [Google Scholar] [CrossRef]
- Getis, A. A History of the Concept of Spatial Autocorrelation: A Geographer’s Perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Dormann, C.M.; McPherson, J.B.; Araújo, M.; Bivand, R.; Bolliger, J.; Carl, G.; Kühn, I. Methods to account for spatial auto-correlation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, E.M.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A Econ. Space 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192. [Google Scholar] [CrossRef]
- Su, Z.; Hu, H.; Tigabu, M.; Wang, G.; Zeng, A.; Guo, F. Geographically Weighted Negative Binomial Regression Model Predicts Wildfire Occurrence in the Great Xing’an Mountains Better Than Negative Binomial Model. Forests 2019, 10, 377. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol. Model. 2002, 153, 51–68. [Google Scholar] [CrossRef]
- Diniz-Filho, J.A.F.; Bini, L.M. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob. Ecol. Biogeogr. 2005, 14, 177–185. [Google Scholar] [CrossRef]
- Fang, H.; Srivas, T.; de Callafon, R.A.; Haile, M.A. Ensemble-based simultaneous input and state estimation for nonlinear dynamic systems with application to wildfire data assimilation. Control Eng. Pract. 2017, 63, 104–115. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Abaimov, S.G.; Shcherbakov, R.; Rundle, J.B. Nonlinear dynamics of natural hazards. In Nonlinear Dynamics in Geosciences; Springer: New York, NY, USA, 2007; pp. 557–580. [Google Scholar]
- Olden, J.D.; Lawler, J.J.; Poff, N.L. Machine Learning Methods without Tears: A Primer for Ecologists. Q. Rev. Biol. 2008, 83, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.P.C.; Havstad, K.M.; Cushing, J.; Tweedie, E.C.; Fuentes, O.; Villanueva-Rosales, N. Harnessing the power of big data: Infusing the scientific method with machine learning to transform ecology. Ecosphere 2014, 5, art67. [Google Scholar] [CrossRef]
- Thessen, A. Adoption of Machine Learning Techniques in Ecology and Earth Science. One Ecosyst. 2016, 1, e8621. [Google Scholar] [CrossRef]
- Amatulli, G.; Rodrigues, M.J.; Trombetti, M.; Lovreglio, R. Assessing long-term fire risk at local scale by means of decision tree technique. J. Geophys. Res. Earth Surf. 2016, 111, 1–15. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere 2019, 10, e02796. [Google Scholar] [CrossRef]
- Massada, A.B.; Syphard, A.D.; Stewart, S.I.; Radeloff, V.C. Wildfire ignition-distribution modelling: A comparative study in the Huron–Manistee National Forest, Michigan, USA. Int. J. Wildland Fire 2013, 22, 174–183. [Google Scholar] [CrossRef]
- Crisci, C.; Ghattas, B.; Perera, G. A review of supervised machine learning algorithms and their applications to ecological data. Ecol. Model. 2012, 240, 113–122. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cal Fire Incident Archive. Available online: http://www.fire.ca.gov/incidents/2017 (accessed on 22 January 2022).
- Riggan, P.J.; Hoffman, J.W. FireMapper™: A thermal-imaging radiometer for wildfire research and operations. In Proceedings of the 2000 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 25 March 2000; Volume 6, pp. 132–135. [Google Scholar]
- Baston, D. Exactextractr: Fast Extraction from Raster Datasets Using Polygons R PACKAGE Version 0.1; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; Intermountain Forest and Range Experiment Station Research Paper; USDA Forest Service: Ogden, UT, USA, 1981. [Google Scholar]
- Blodgett, N.; Stow, D.A.; Franklin, J.; Hope, A.S. Effect of fire weather, fuel age and topography on patterns of remnant veg-etation following a large fire event in southern California, USA. Int. J. Wildland Fire 2010, 19, 415–426. [Google Scholar] [CrossRef]
- Sandberg, D.V.; Riccardi, C.L.; Schaaf, M.D. Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classifi-cation System. Can. J. For. Res. 2007, 37, 2456–2463. [Google Scholar] [CrossRef]
- Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010. Available online: http://www.R--project.org/ (accessed on 1 January 2019).
- Nakaya, T. GWR4.0, version 0.90. Geographically Weighted Regression (GWR) Software. Kyoto, Japan, 2015.
- Charlton, M.; Fotheringham, S.; Brunsdon, C. Geographically Weighted Regression; National Centre for Geocomputation, National University of Ireland Maynooth: Maynooth, Ireland, 2009. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.; Charlton, M. Geographically weighted summary statistics—A framework for localised exploratory data analysis. Comput. Environ. Urban Syst. 2002, 26, 501–524. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression; John Wiley & Sons: West Sussex, UK, 2002. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Murakami, D. Spmoran: An R package for Moran’s eigenvector-based spatial regression analysis. arXiv 2017. preprint. [Google Scholar]
- Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015, 17, 311–331. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Griffith, D.; Neto, P.P. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 2006, 87, 2603–2613. [Google Scholar] [CrossRef]
- Therneau, T.; Atkinson, B.; Ripley, B.; Ripley, M.B. Package ‘Rpart’. 2015. Available online: https://cran.pau.edu.tr/web/packages/rpart/rpart.pdf (accessed on 1 May 2019).
- Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines; Technical Report no. 61; Mayo Foundation: Rochester, MN, USA, 1997. [Google Scholar]
- Aiello, S.; Click, C.; Roark, H.; Rehak, L.; Lanford, J. Machine learning with python and h20. Compr. R Arch. Netw. 2016, 5, 83. [Google Scholar]
- Holsinger, L.; Parks, S.A.; Miller, C. Forest Ecology and Management Weather, fuels, and topography impede wildland fire spread in western US landscapes. For. Ecol. Manag. 2016, 380, 59–69. [Google Scholar] [CrossRef]
- Moritz, M.A.; Moody, T.J.; Krawchuk, M.A.; Hughes, M.; Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Rothermel, R.C. A mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper. INT-115; US Department of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; Volume 40, p. 115. [Google Scholar]
- Viedma, O.; Quesada, J.; Torres, I.; De Santis, A.; Moreno, J.M. Fire Severity in a Large Fire in a Pinus pinaster Forest is Highly Predictable from Burning Conditions, Stand Structure, and Topography. Ecosystems 2016, 18, 237–250. [Google Scholar] [CrossRef]
Linear | Exponential | Power | GWR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | Adj. R2 | p | (y = abx) | Adj. R2 | p | (y = axb) | Adj. R2 | p | β | AIC | Adj. R2 | ANOVA p | |
Det. (n = 188) | |||||||||||||
Vector | 0.250 | 0.160 | <0.001 | 6.650(1.031)slope | 0.075 | <0.001 | 2.200(slope)1.936 | 0.078 | <0.001 | 0.264 | 1096.48 | 0.332 | <0.001 |
25 m | 0.247 | 0.153 | <0.001 | 6.458(1.030)slope | 0.065 | <0.001 | 2.356(slope)1.770 | 0.067 | <0.001 | 0.262 | 1098.40 | 0.325 | <0.001 |
50 m | 0.262 | 0.160 | <0.001 | 6.547(1.031)slope | 0.064 | <0.001 | 2.411(slope)1.851 | 0.067 | <0.001 | 0.262 | 1098.40 | 0.325 | <0.001 |
Th.1 (n = 361) | |||||||||||||
Vector | 0.521 | 0.413 | <0.001 | 7.400(1.045)slope | 0.513 | <0.001 | 1.133(slope)4.979 | 0.490 | <0.001 | 0.543 | 2500.99 | 0.558 | <0.001 |
25 m | 0.517 | 0.423 | <0.001 | 7.379(1.046)slope | 0.505 | <0.001 | 1.129(slope)4.874 | 0.481 | <0.001 | 0.542 | 2502.71 | 0.556 | <0.001 |
50 m | 0.522 | 0.411 | <0.001 | 7.339(1.045)slope | 0.497 | <0.001 | 1.120(slope)4.858 | 0.472 | <0.001 | 0.548 | 2506.89 | 0.551 | <0.001 |
Th.2 (n = 416) | |||||||||||||
Vector | 0.459 | 0.432 | <0.001 | 6.771(1.047)slope | 0.548 | <0.001 | 0.997(slope)4.960 | 0.533 | <0.001 | 0.419 | 2812.46 | 0.582 | <0.001 |
25 m | 0.447 | 0.410 | <0.001 | 6.740(1.045)slope | 0.534 | <0.001 | 1.212(slope)4.639 | 0.518 | <0.001 | 0.410 | 2818.99 | 0.576 | <0.001 |
50 m | 0.456 | 0.423 | <0.001 | 6.681(1.048)slope | 0.518 | <0.001 | 1.311(slope)4.766 | 0.523 | <0.001 | 0.419 | 2818.54 | 0.576 | <0.001 |
Th.3 (n = 129) | |||||||||||||
Vector | 0.292 | 0.494 | <0.001 | 5.629(1.044)slope | 0.536 | <0.001 | 1.102(slope)3.807 | 0.513 | <0.001 | 0.309 | 743.22 | 0.551 | 0.004 |
25 m | 0.287 | 0.483 | <0.001 | 5.623(1.043)slope | 0.524 | <0.001 | 1.137(slope)3.753 | 0.502 | <0.001 | 0.303 | 746.62 | 0.539 | 0.005 |
50 m | 0.285 | 0.490 | <0.001 | 5.611(1.043)slope | 0.515 | <0.001 | 1.200(slope)3.598 | 0.491 | <0.001 | 0.302 | 750.29 | 0.526 | 0.006 |
Th.4 (n = 377) | |||||||||||||
Vector | 0.525 | 0.194 | <0.001 | 7.749(1.028)slope | 0.191 | <0.001 | 2.310(slope)3.028 | 0.173 | <0.0000 | 0.548 | 3083.93 | 0.342 | <0.001 |
25 m | 0.516 | 0.191 | <0.001 | 7.775(1.028)slope | 0.191 | <0.001 | 2.308(slope)3.031 | 0.173 | <0.0000 | 0.228 | 3088.53 | 0.334 | <0.001 |
50 m | 0.519 | 0.190 | <0.001 | 7.763(1.028)slope | 0.188 | <0.001 | 2.312(slope)3.006 | 0.171 | <0.0000 | 0.540 | 3088.80 | 0.334 | <0.001 |
GWR | ESF Regression | Multiple Stepwise Regression | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AIC | Adj. R2 | ANOVA p-Value | Residual SE | AIC | VIF max | Adj. R2 | p-Value | AIC | VIF max | Adj. R2 | p-Value | |
Det. | ||||||||||||
Vector | 1079.96 | 0.395 | 0.002 | 3.83 | 1061.95 | 6 | 0.496 | 0.013 | 1121.31 | 1 | 0.237 | <0.001 |
25 m | 1070.76 | 0.427 | 0.026 | 4.13 | 1082.34 | 7 | 0.414 | 0.015 | 1114.46 | 6 | 0.268 | <0.001 |
50 m | 1072.79 | 0.421 | 0.028 | 3.85 | 1064.59 | 9 | 0.491 | 0.016 | 1118.19 | 6 | 0.254 | <0.001 |
Th.1 | ||||||||||||
Vector | 2511.38 | 0.553 | <0.001 | 7.08 | 2460.93 | 7 | 0.622 | <0.001 | 2542.85 | 3 | 0.505 | <0.001 |
25 m | 2512.42 | 0.552 | <0.001 | 7.09 | 2463.56 | 8 | 0.621 | 0.003 | 2534.40 | 3 | 0.517 | 0.001 |
50 m | 2514.60 | 0.549 | <0.001 | 7.09 | 2461.52 | 8 | 0.621 | 0.005 | 2537.71 | 3 | 0.512 | 0.003 |
Th.2 | ||||||||||||
Vector | 2819.99 | 0.582 | <0.001 | 6.37 | 2755.96 | 8 | 0.671 | <0.001 | 2895.55 | 4 | 0.490 | 0.004 |
25 m | 2818.19 | 0.586 | <0.001 | 6.25 | 2744.00 | 9 | 0.651 | 0.002 | 2886.62 | 5 | 0.501 | 0.004 |
50 m | 2805.79 | 0.596 | <0.001 | 6.26 | 2749.32 | 9 | 0.649 | 0.003 | 2882.78 | 5 | 0.504 | 0.006 |
Th.3 | ||||||||||||
Vector | 738.28 | 0.577 | 0.015 | 3.443 | 704.54 | 1 | 0.706 | <0.001 | 747.61 | 1 | 0.543 | <0.001 |
25 m | 740.76 | 0.568 | 0.010 | 3.604 | 710.29 | 3 | 0.677 | <0.001 | 751.20 | 1 | 0.531 | <0.001 |
50 m | 748.47 | 0.542 | 0.019 | 3.605 | 708.27 | 4 | 0.675 | 0.002 | 757.16 | 1 | 0.508 | <0.001 |
Th.4 | ||||||||||||
Vector | 3083.91 | 0.354 | <0.001 | 12.93 | 2018.33 | 4 | 0.463 | <0.001 | 3133.22 | 4 | 0.251 | <0.001 |
25 m | 3124.03 | 0.267 | <0.001 | 12.86 | 2013.11 | 5 | 0.469 | <0.001 | 3124.03 | 5 | 0.269 | <0.001 |
50 m | 3069.48 | 0.381 | <0.001 | 12.66 | 2002.61 | 5 | 0.485 | <0.001 | 3119.65 | 7 | 0.277 | <0.001 |
Stepwise | ESF | |||
---|---|---|---|---|
50 m LSU Model | Moran’s I | p-Value | Moran’s I | p-Value |
Detwiler | 0.445 | <0.001 | −0.068 | 0.659 |
Thomas 1 | 0.372 | <0.001 | 0.057 | 0.732 |
Thomas 2 | 0.388 | <0.001 | −0.059 | 0.806 |
Thomas 3 | 0.441 | <0.001 | −0.073 | 0.630 |
Thomas 4 | 0.350 | <0.001 | −0.033 | 0.745 |
Stepwise (β1) and Moran’s I Eigenvector Spatial Filtering (β2) Regression Coefficients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Spread Sequence | ||||||||||
Detwiler | Th.1 | Th.2 | Th.3 | Th.4 | ||||||
β1 | β2 | β1 | β2 | β1 | β2 | β1 | β2 | β1 | β2 | |
Directional Slope | 0.26 | 0.27 | 0.53 | 0.53 | 0.45 | 0.41 | 0.38 | 0.27 | 0.56 | 0.49 |
Shrub Fraction | — | — | — | — | — | — | 3.16 | 3.98 | — | — |
Herb Fraction | 4.35 | 3.94 | 19.87 | 7.11 | 9.43 | 9.05 | — | — | — | — |
Tree Fraction | — | — | −14.55 | −25.58 | — | — | — | — | −29.06 | −22.86 |
Rock/Barren Fraction | — | — | — | — | −9.39 | −7.05 | — | — | −21.92 | −22.81 |
NDVI | — | — | 19.67 | 11.40 | 40.22 | 23.02 | 18.19 | 14.00 | 51.79 | 81.88 |
GRVI | — | — | −98.11 | 104.56 | −102.91 | −69.41 | — | — | — | — |
NDRB | — | — | — | — | — | — | — | — | — | — |
CART (Regression Tree) | Random Forest | |||||
---|---|---|---|---|---|---|
CV RMSE | CV R2 | Variables Required by Model | CV RMSE | CV R2 | Variable Importance (Top 3) | |
Det. | ||||||
Vector | 4.60 | 0.396 | slope, herb, shrub, NDVI | 4.49 | 0.322 | slope, herb, shrub |
25 m | 4.74 | .399 | slope, herb, shrub, GRVI | 4.61 | 0.336 | slope, herb, shrub |
50 m | 4.83 | .391 | slope, herb, shrub, GRVI | 4.81 | 0.313 | slope, herb, shrub |
Th. 1 | ||||||
Vector | 7.48 | 0.602 | Slope, herb, GRVI, NDRB | 7.19 | 0.643 | slope, shrub, GRVI |
25 m | 7.26 | 0.620 | Slope, shrub, herb, GRVI, NDRB | 6.94 | 0.650 | slope, shrub, herb |
50 m | 7.48 | 0.606 | Slope, shrub, herb, GRVI, NDRB | 7.14 | 0.643 | slope, shrub, herb |
Th.2 | ||||||
Vector | 6.79 | 0.623 | slope, herb, rock and barren, NDVI | 6.58 | 0.657 | slope, herb, rock and barren |
25 m | 6.99 | 0.604 | slope, herb, rock and barren, NDVI | 6.73 | 0.639 | slope, herb, rock and barren |
50 m | 7.07 | 0.596 | slope, herb, rock and barren, NDVI | 6.82 | 0.631 | slope, herb, NDVI |
Th.3 | ||||||
Vector | 3.80 | 0.670 | slope, shrub, NDVI, GRVI | 3.52 | 0.667 | slope, shrub, NDVI |
25 m | 3.64 | 0.711 | slope, rock and barren, shrub, NDVI, GRVI | 3.42 | 0.721 | slope, shrub, rock and barren |
50 m | 4.05 | 0.692 | slope, shrub, herb, NDVI | 3.84 | 0.717 | slope, shrub, herb |
Th.4 | ||||||
Vector | 12.31 | 0.508 | slope, shrub, rock and barren, NDVI, GRVI | 11.40 | 0.551 | slope, shrub, rock and barren |
25 m | 11.01 | 0.544 | slope, shrub, rock and barren, NDVI, GRVI | 10.61 | 0.563 | slope, shrub, rock and barren |
50 m | 12.89 | 0.442 | slope, shrub, rock and barren, NDVI, GRVI | 12.69 | 0.458 | slope, shrub, rock and barren |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schag, G.M.; Stow, D.A.; Riggan, P.J.; Nara, A. Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of Spread. Remote Sens. 2022, 14, 3980. https://doi.org/10.3390/rs14163980
Schag GM, Stow DA, Riggan PJ, Nara A. Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of Spread. Remote Sensing. 2022; 14(16):3980. https://doi.org/10.3390/rs14163980
Chicago/Turabian StyleSchag, Gavin M., Douglas A. Stow, Philip J. Riggan, and Atsushi Nara. 2022. "Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of Spread" Remote Sensing 14, no. 16: 3980. https://doi.org/10.3390/rs14163980
APA StyleSchag, G. M., Stow, D. A., Riggan, P. J., & Nara, A. (2022). Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of Spread. Remote Sensing, 14(16), 3980. https://doi.org/10.3390/rs14163980