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Abstract: The objectives of this study were to evaluate spatial sampling and statistical aspects of
landscape-level wildfire rate of spread (ROS) estimates derived from airborne thermal infrared
imagery (ATIR). Wildfire progression maps and ROS estimates were derived from repetitive ATIR
image sequences collected during the 2017 Thomas and Detwiler wildfire events in California. Three
separate landscape sampling unit (LSU) sizes were used to extract remotely sensed environmental
covariates known to influence fire behavior. Statistical relationships between fire spread rates and
landscape covariates were analyzed using (1) bivariate regression, (2) multiple stepwise regression,
(3) geographically weighted regression (GWR), (4) eigenvector spatial filtering (ESF) regression,
(5) regression trees (RT), and (6) and random forest (RF) regression. GWR and ESF regressions
reveal that relationships between covariates and ROS estimates are substantially non-stationary and
suggest that the global association of fire spread controls are locally differentiated on landscape scales.
Directional slope is by far the most strongly associated covariate of ROS for the imaging sequences
analyzed and the size of LSUs has little influence on any of the covariate relationships.

Keywords: remote sensing; wildland fire; fire rate of spread; thermal imagery; spatial statistics;
machine learning

1. Introduction

Fire plays an integral role in many ecosystem processes [1] but can significantly im-
pact environments and communities globally [2,3]. The spatial characteristics of wildfire
behavior at landscape scales is an important aspect of fire ecology [4,5], and an important
component of wildfire behavior is rate of spread (ROS). Many environmental components
influence ROS at landscape scales, including (1) fuels, (2) topography, and (3) weather/fire-
induced weather [6–9]. Airborne thermal infrared (ATIR) imagery provides a useful data
source for mapping and estimating fire perimeters [10–14]. Repetitive ATIR imagery com-
bined with terrain- and fuel-related data are useful for studying landscape-level controls
and spatial relationships of environmental controls with wildfire behavior [15,16].

Stow et al. [12] illustrated the benefits of directly measuring fire spread by delineating
front movements from repeat-pass ATIR imagery. Stow et al. [13] further demonstrated the
capabilities of using repeat-ATIR imagery for evaluating landscape-level ROS estimates.
They tested several image processing edge-detection filters and manual fire front delin-
eation approaches to document levels of uncertainty and precision with ROS measurements
derived from several different wildfires.

Ordinary least square (OLS) regression methods are common in wildfire research [17–20].
However, OLS models are subjected to assumptions of independent observation and constant
variances over space [21], potentially limiting their efficiency for wildfire research [22,23].
Similarly, violation of OLS assumptions from spatial non-stationarity and autocorrelation is
common with ecological variables exhibiting dynamic spatial and temporal characteristics [24].
Spatial non-stationarity is observable when a lack of stability over space for a landscape pro-
cess is exhibited and can violate assumptions of OLS constant variance over space [25,26].
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Spatial autocorrelation is defined as the correspondence between variable attributes in ge-
ographic space [24–27]. Spatial autocorrelation is prevalent in wildfire/ecological process
modeling and is problematic for classical modeling practices such as OLS that assume in-
dependently distributed errors [26,27]. Similarly, spatial autocorrelation can be problematic
for linear models by altering parameter estimates when spatially successive sampling struc-
tures or observations are present [24–26]. Spatial non-stationarity and autocorrelation are
equally important for spatial modeling endeavors and should always be considered when
investigating dynamic ecological and spatial processes [24,28].

Geographically weighted regression (GWR) regression was developed to account
for variable non-stationarity by enabling the estimation of model parameters at separate
sample locations, thereby allowing the description of patterns and relationships between
variables over space [28]. The incorporation of spatially varying relationships between
variables over space using GWR has become increasingly popular and lends itself to the
stochastic nature of wildfire behavior [23,29,30]. Eigenvector-based spatial filtering (ESF)
regression is a solution to account for spatial autocorrelation by extracting eigenvectors
from a distance-connectivity matrix created between spatial units and structured sampling
frameworks [31]. These eigenvectors are used to describe the spatial structure of data for a
study region and are added as additional predictors of the response variable [31,32]. This
allows spatial structures in regression residuals to be considered during the model fitting
processes, largely removing any effect of spatial autocorrelation within a model.

The relationship between wildfire spread rates and landscape covariates is inherently
complex. Research on the relationship between the environment and wildfire behavior
can also be hindered by variable nonlinearity and interactions occurring on different
scales [33–35]. Subsequently, many fire behavior and ecological studies have employed
the use of machine learning (ML) algorithms to better identify complex structures stem-
ming from nonlinear data and variable interactions without having to satisfy the strict
assumptions required by traditional parametric modeling approaches [36–38]. Regression
trees (RTs) [39,40] and random forest (RF) [34,41] are popular tree-based ML algorithms
commonly used to study ecological relationships with fire behavior. Tree-based methods
involve the partitioning of data into subsets with lower variance than the first, producing a
branching structure [42]. However, single-tree models such as RT can exhibit high variance
resulting in unstable predictions and poor characterization of variable interactions [42].
Subsequently, small changes in training data can produce significantly different models. To
account for the high variance of single tree models, ensemble methods such as bootstrap
aggregating (bagging) were created to combine and average multiple single-tree models to
build an average predicted tree [43]. However, bagging approaches with RT are still limited
by the high correlation of separate trees used to fit the final model [44]. To further accom-
modate bagging limitations with RT, the RF algorithm was developed by Breiman [44]. RF
algorithms add additional randomness to bagging by using random subsets of data that
are decorrelated from one another. In contrast to RT, the RF method constructs trees from
the most influential variables within each random bootstrap subset by the employment of
split-variable randomization. Each tree in a RF provides a single vote of variable impor-
tance and is averaged across all trees. RF algorithms usually perform well with little user
tuning required, contain built-in validation, and are robust to outliers [42]. However, the
RF algorithm can be very slow with large data sets and is less easily interpreted compared
to RT [42].

Schag et al. [15] used fire spread vectors connecting sequential fire fronts as landscape
sampling units (LSUs) to quantify ROS and sample topographic and fuel covariates. In
that study, variable stratification with bivariate and multiple stepwise regression were
used to analyze ROS estimates and landscape covariates. They found that directional slope
was the most significant explanatory variable of fire spread rates, while image-derived
fuel surrogates, composed of spectral vegetation indices (SVIs) and growth form maps,
explained little variance in ROS. Schag et al. (2021) [15] determined that measurements of
wind speed and direction and relative humidity are too spatially and temporally coarse
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to be included as covariates for statistical analyses of fire rate of spread at the landscape
scales at which fire behavior was evaluated. This study builds on the work of Schag
et al. (2021) [15], with the objective of assessing the effects of different spatial sampling
unit sizes and the utility of different spatial and ML models in assessing landscape-scale
environmental controls on ROS estimates derived from ATIR imagery.

2. Materials and Methods
2.1. Study Areas

The study areas for this research are found within localized burn extents of the
2017–2018 California Thomas and Detwiler wildfires where time sequential ATIR imagery
was collected, as shown in Figure 1. The Thomas Fire burned from 4 December 2017 to
12 January 2018, in Santa Barbara and Ventura counties [45]. The Detwiler fire burned
over 30,000 ha in Mariposa County from 16 July to 29 August 2017. The study areas are
composed of mountainous topography with significant variations in slope angle and aspect.
Chaparral, coastal sage scrub, and oak woodland fuel types were prevalent within the burn
extents of the wildfires.
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Figure 1. Study area locations within the burn extents of the 2017 Detwiler and Thomas Fires.
Different shapes show locations of airborne thermal infrared (ATIR) imaging missions.

2.2. Airborne Thermal Infrared (ATIR) Imagery and Processing

ATIR imagery was collected with the FireMapper 2.0 thermal infrared imaging system.
The FireMapper 2.0 system is a compact fire imaging radiometer that uses a microbolometer
focal-plan array (BAE Systems, Inc., Falls Church, VA, USA), providing thermal-infrared
imagery from 9 to 12.5 µm [46]. Imaging flight lines were oriented perpendicular to the
general direction of wildfire spread (and commonly the predominant wind direction) [13]
to sequentially image active fire fronts at time intervals between 6 and 45 min, depending
on the apparent fire spread direction during image acquisition (Figure 2).
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Although we collected FireMapper 2.0 imagery for four days of the Thomas Fire, we
prioritized imagery selection for ROS analyses based on imaged areas with a high number
of repetitive flight-passes at fire fronts. FireMapper imagery was geometrically corrected
using onboard positional (global navigation satellite system) and attitude (inertial motion
unit) data and provided in the form of orthomosaics and georeferenced image frames, as
described in Schag et al. [15]. The selected ATIR images were acquired on 8–9 December
2017. Four separate image sequences ranging between 7 and 26 repetitive passes were
processed and analyzed; these are referred to as Thomas Sequences 1 through 4 (Figure 2).
The imagery has a nominal ground sample distance (GSD) of 10 m. The average time
between successive imaging passes ranged from 6 to 10 min. A seven-image sequence
captured with a nominal GSD of 13 m and repeat pass intervals of 7 to 9 min for the Detwiler
Fire on 20 July 2017 was also analyzed. The root mean square error of co-registration of
sequential FireMapper 2.0 image pairs is approximately 1–2 pixels [13].

2.3. Geospatial Data

Visible and near infrared orthoimagery and digital elevation model data were sources
for mapping surrogates for fuel load and condition and topography, respectively. Pre-fire
National Agricultural Inventory Program (NAIP) imagery (extracted from the USGS earth
explorer tool (https://earthexplorer.usgs.gov/, accessed 1 August 2020), with a GSD of
0.6 m captured in July and August of 2016, were used to generate SVI images and map
vegetation growth form types. Digital elevation models (DEMs) with 10 m (1/3 arc seconds)
rasters were retrieved from the United States Geological Survey (USGS) National Elevation
Dataset (NED). The NED-DEMs were used to generate a topographic landscape variable,
directional slope, which was found by Schag et al. [15] to be highly correlated with ROS.

2.4. Fire Front, Spread Vector, and Landscape Sampling Unit (LSU) Delineation

Fire front locations were delineated from co-registered, repeat-pass ATIR image fol-
lowing procedures developed by Stow et al. [12,13] and conducted in Schag et al. [15].
Contrast enhancements were applied to ATIR images, enabling polylines to be manually
delineated and digitized.

Fire spread vectors were used as the geographic units to calculate ROS and connect
sequential fire fronts [13], as illustrated in Figure 3. Evenly spaced points along a time = n
front curve every 30 m were automatically generated by local-normal polyline connections
along each individual point until extension to the intersection of the time = n + 1 fire
front. Spread vectors were then generated using the Perpendicular Distance tool (ArcMap
10.4.1) and assigned geometry attributes in the form of a line bearing (0–360◦), vector start
(x,y and front ID), vector end (x,y and front ID), vector centroid (x,y), and distance (m).
Associated with each spread vector is an estimate of ROS (m min−1), calculated as the
vector magnitude divided by the time interval between sequential images [13].

We refer to the spatial units of analysis for comparing ROS estimates to landscape
covariates as LSUs, which were created using the “Buffer” tool in ArcGIS Pro. Three
separate LSU sizes including (1) spread vector pixels, (2) 25 m buffers, and (3) 50 m buffers
were used for sampling and analyzing landscape covariates. LSUs have spatial geometry
attributes consisting of the fire spread bearing, the length of the unit, and the unit’s size (m2).
An example of 25 m LSUs separated along fire fronts is depicted in Figure 3b. The derivation
of LSU sizes used in this study was determined from findings from Stow et al. [13] and
Schag et al. [15] to capture the variance of landscape-scale influences of fire spread rates
calculated from the ATIR image sequences.

https://earthexplorer.usgs.gov/
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2.5. Image Derived Fuel Covariates

Five SVIs were generated from NAIP images and assessed as surrogates of fuel loading
and condition, and/or to classify growth from vegetation types: Normalized Difference
Vegetation Index (NDVI) (Equation (1)), Green-Red Vegetation Index (GRVI) (Equation (2)),
and Normalized Difference Red-Blue (NDRB) (Equation (3)) images were created for all
fire sequences.

NDVI =
(NIR − RED)

(NIR + RED)
(1)

GRVI =
(GREEN − RED)

(GREEN + RED)
(2)

NDRB =
(RED − BLUE)
(RED + BLUE)

(3)

VB = (RED + GREEN + BLUE) (4)

RG = RED/GREEN (5)

where RED, GREEN, and BLUE are uncalibrated NAIP digital number values for red, green,
and blue wavebands, respectively. Input data for growth form mapping included Visible
Brightness (VB) (Equation (4), the red/green band ratio (RG) (Equation (5), and NDVI.
Classification of four growth form and landscape cover types: (1) shrub, (2) herb, (3) tree,
and (4) rock/bare soil, was based on SVI thresholds that were determined interactively.

2.6. Topographic Data Derived Covariates

Directional slope (◦), the slope inclination relative to the fire spread direction, was
calculated from NED-DEM data with a customized routine developed by Schag et al. [15].
Directional slope was calculated as:

DS = S ∗ cos
(
(VD − A) ∗ π

180

)
∗ − 1 (6)

where DS is the output directional slope raster, S is a raster gird representing slope degree
values, VD is the spread vector bearing (degree) raster, and A is the aspect in degrees.
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2.7. Landscape Covariate Sampling

We implemented zonal sampling with scripted GIS tools to extract SVI, growth form,
and directional slope data for LSUs [47]. Samples were stratified within a database and
linked to statistical software to support ROS statistical analyses.

Like-classified, contiguous growth form pixels were grouped and converted into
vector polygons. LSUs were then used to clip their coincident growth-form polygons.
Finally, the fractional cover (FC) percentage of each growth form (based on the LSU
size) was quantified on a scale of 0–1. For example, an LSU with 30% shrub cover, 30%
herbaceous cover, 40% rock/barren cover, and 0% tree would be assigned the following
units: 0.3-Shrub, 0.3-Herb, 0.4-rock/barren, and 0.0-tree. Growth form fractions within
each LSU were then used to assign a “LSU Fuel Class” type to each unit. Fuel classes were
based on generalized modifications of several fuel/vegetation classification schemes from
several sources [48–50].

2.8. Statistical Analyses

We applied bivariate linear regression and geographically weighted regression (GWR)
analyses to assess whether relationships between ROS and covariates varied with differ-
ent sizes of LSUs and compared four different spatial statistical routines for examining
multi-covariate relationships. Bivariate regressions were run with linear, exponential, and
power models, and evaluated based on beta and standardized beta coefficients (β), ad-
justed coefficient of determination (adj. R2), Akaike’s Information Criterion (AIC), and
p-value diagnostics.

Six statistical algorithms were employed to comprehensively examine relationships
between landscape covariates and ROS estimates: (1) bivariate regression, (2) multiple
stepwise regression, (3) geographically weighted regression (GWR), (4) eigenvector spatial
filtering regression (ESF), (5) regression trees (RTs), and (6) random forest (RF) regression.
All statistical analyses except GWR models were conducted using R Statistical Software [51].
Data visualizations and descriptive/inferential statistics were generated with global R
functions. The more complex modeling procedures that were implemented with separate
downloadable R packages are documented below. All statistical models were fit using
covariate sample means derived from LSUs.

GWR models were built using the GWR4 software suite by Nakaya [52]. The best
combination of landscape covariates exhibiting the lowest AIC and Mallows CP, highest
adj. R2, and significant F-static (identified during forward-and-backward multiple stepwise
regression) were used for constructing GWR models. A Gaussian weighting function
having an adaptive spatial kernel and AIC minimization bandwidth were used to calibrate
all models [53]. The optimal bandwidth was selected using the “Golden Section Search”
algorithm. AIC and mean adj. R2 diagnostics were used to examine models.

Although OLS and GWR models use different regression parameters, they can still
be evaluated and compared using standard model diagnostics [54]. Candidate models
were compared using adj. R2 and AIC diagnostics. Models with the highest adj. R2 and
lowest AIC were deemed to have the best fit and performance. The residual sum of squares
and residual standard error (RSE) estimates of candidate models were also employed
to evaluate and compare model performances. Lower residual error indicated stronger
model performance [25]. ANOVA tests were conducted to test the null hypothesis that
there was no improvement in GWR over OLS. An F-statistic was computed and, if F was
significant (p-value < 0.05), the null hypothesis was rejected, indicating GWR substantially
improved model fit over OLS counterparts [55,56]. Local coefficients from GWR models
were analyzed to determine variable spatial non-stationarity. If a covariate’s local estimate
interquartile range was greater than twice the standard deviation of global model (OLS)
estimates, the variable was considered to exhibit significant spatial non-stationarity [55].

ESF regression was conducted in R using the spmoran package [57]. The procedure
for fitting ESF models included (1) generating a doubly centered spatial connectivity
matrix (MCM) for each LSU sample population, (2) extraction of positive eigenvectors
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from the MCM matrix, (3) multicollinearity filtering, and (4) model fitting using all original
covariates combined with eigenvectors used as co-variables [57]. UTM centroid coordinates
for the vector LSUs and polygon-border coordinates for the 25 and 50 m LSUs were used to
create doubly centered spatial connectivity matrices for each distinct spread sequence and
sample population using the spmoran meig function. Significant spatial proximities for
each connectivity matrix (distance-based C in the MCM matrix) were determined using
a “Gaussian C matrix whose (i,j)-th element equals exp(–di,j/r)” [57] (p. 6), where di,j is
the Euclidean distance between sites i and j, and r is the longest distance in the minimum
spanning tree covering the study sites, or spatial structure of LSUs [57–59]. Eigenvectors
corresponding to positive eigenvalues (λ or MC in MCM > 0) were extracted from MCM
matrixes using the meigen function. The λ > 0 threshold was applied to represent all
positive spatial dependencies of each data set by characterizing each level of the matrix
being indexed by the Moran coefficient (MC) [57,60]. To account for any multicollinearity,
only eigenvectors that exhibited a VIF < 10 entered a model. The filtered eigenvectors were
then used as control variables, or co-variables, for fitting OLS models. Model R2, AIC, and
the beta coefficient were the diagnostics used to interpret and compare ESF models.

Data sets for each study area and LSU sample population were split into training
(70%) and testing (30%) groups. RT models were fit with training data using the rpart R
package [61]. RTs were first built by producing maximal trees that contained no specified
pruning parameters and stopping points. Maximal trees were fit first to examine the
range of parameters applied by the default rpart function to a data set with no descriptive
information being left out of the training data. Maximal trees commonly overfit data and
include considerable noise. For this reason, pruning of maximal trees was conducted using
the cost-complexity (CP) criterion parameter [62]. CP determines the optimum RT as a
trade-off between a tree’s data fit, training data set size, and the size of the tree (number of
terminal nodes) [62]. Optimal RT models were evaluated by the mean square error (MSE),
R2, and cross validation (CV)-RMSE and -R2 on corresponding test data. To ensure RT
models were not overfitting test data or producing biased estimates, the leave-one-out
(LOO) CV-RMSE and R2 were calculated during model construction. LOO is a K-fold
CV procedure that trains N (K = N) number of models, leaving one sample out to test
prediction. LOO diagnostics are produced from averaging errors across all N models.

RF models were fit with the same training and test sample groups used to construct
RT models. RF models were trained and evaluated using the h2o R package [63]. RF
models in the h2o package have many tuning parameters including (1) number of trees,
(2) the number of variables to randomly sample at each split, (3) the number of training
samples, (4) the minimum number of samples at a terminal node, and (5) the maximum
number of terminal nodes. To determine the most appropriate parameters for each RF
model, full Cartesian grid searches were employed for all models. Full Cartesian grid
searches test every combination of model parameters until the model with the lowest
MSE and out-of-bag (OOB) test error is found. Optimal RT models were evaluated by the
mean square error (MSE), R2, and LOO CV-RMSE and -R2 on corresponding test data. The
variable importance (VI) measure was used to determine the relative significance of each
covariate on predicting ROS estimates. VI is measured by recording the decrease in MSE
every time a variable is used as a node split in a tree and is calculated automatically for RF
models in the h2o R package.

3. Results
3.1. Bivariate Relationships

Linear, exponential, power-law, and GWR regression results for ROS on directional
slope, structured by study fire, ATIR sequence, and LSU size, are presented in Table 1.
We present only the ROS-directional slope relationships, as most of the relationships
with image-derived fuel covariates (SVIs and growth form fractions) were not statistically
significant and the weakly significant relationship resulted from large sample sizes (n) with
adj. R2 < 0.15 and p > 0.05. Significant (p < 0.05) but weak relationships were found for all
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three SVIs tested (NDVI, GRVI, and NDBR) for the Detwiler and Thomas 4 sequences, and
for herb and barren/rock fractions for the Thomas 4 sequence.

Table 1. Linear, semi-log (exponential), log-log (power), and geographically weighted regression
model diagnostics for directional slope. Separated by fire and ATIR sequence. Det. = Detwiler Fire,
Th. = Thomas Fire.

Linear Exponential Power GWR

β
Adj.
R2 p (y = abx) Adj.

R2 p (y = axb) Adj.
R2 p β AIC Adj.

R2
ANOVA

p

Det. (n = 188)

Vector 0.250 0.160 <0.001 6.650(1.031)slope 0.075 <0.001 2.200(slope)1.936 0.078 <0.001 0.264 1096.48 0.332 <0.001

25 m 0.247 0.153 <0.001 6.458(1.030)slope 0.065 <0.001 2.356(slope)1.770 0.067 <0.001 0.262 1098.40 0.325 <0.001

50 m 0.262 0.160 <0.001 6.547(1.031)slope 0.064 <0.001 2.411(slope)1.851 0.067 <0.001 0.262 1098.40 0.325 <0.001

Th.1 (n = 361)

Vector 0.521 0.413 <0.001 7.400(1.045)slope 0.513 <0.001 1.133(slope)4.979 0.490 <0.001 0.543 2500.99 0.558 <0.001

25 m 0.517 0.423 <0.001 7.379(1.046)slope 0.505 <0.001 1.129(slope)4.874 0.481 <0.001 0.542 2502.71 0.556 <0.001

50 m 0.522 0.411 <0.001 7.339(1.045)slope 0.497 <0.001 1.120(slope)4.858 0.472 <0.001 0.548 2506.89 0.551 <0.001

Th.2 (n = 416)

Vector 0.459 0.432 <0.001 6.771(1.047)slope 0.548 <0.001 0.997(slope)4.960 0.533 <0.001 0.419 2812.46 0.582 <0.001

25 m 0.447 0.410 <0.001 6.740(1.045)slope 0.534 <0.001 1.212(slope)4.639 0.518 <0.001 0.410 2818.99 0.576 <0.001

50 m 0.456 0.423 <0.001 6.681(1.048)slope 0.518 <0.001 1.311(slope)4.766 0.523 <0.001 0.419 2818.54 0.576 <0.001

Th.3 (n = 129)

Vector 0.292 0.494 <0.001 5.629(1.044)slope 0.536 <0.001 1.102(slope)3.807 0.513 <0.001 0.309 743.22 0.551 0.004

25 m 0.287 0.483 <0.001 5.623(1.043)slope 0.524 <0.001 1.137(slope)3.753 0.502 <0.001 0.303 746.62 0.539 0.005

50 m 0.285 0.490 <0.001 5.611(1.043)slope 0.515 <0.001 1.200(slope)3.598 0.491 <0.001 0.302 750.29 0.526 0.006

Th.4 (n = 377)

Vector 0.525 0.194 <0.001 7.749(1.028)slope 0.191 <0.001 2.310(slope)3.028 0.173 <0.0000 0.548 3083.93 0.342 <0.001

25 m 0.516 0.191 <0.001 7.775(1.028)slope 0.191 <0.001 2.308(slope)3.031 0.173 <0.0000 0.228 3088.53 0.334 <0.001

50 m 0.519 0.190 <0.001 7.763(1.028)slope 0.188 <0.001 2.312(slope)3.006 0.171 <0.0000 0.540 3088.80 0.334 <0.001

Bivariate models of ROS on directional slope were significant for all LSU sizes and
all model types (linear, exponential, power, and GWR). Model diagnostics were similar
for all LSU sizes; most were only slightly higher for the vector units relative to buffered
LSUs. This suggests that LSU size was not a factor for this particular landscape-scale study
covariate, as elaborated upon below. Values of adj. R2 were highest for the GWR model and,
in general, for Thomas sequences 1–3. Directional slope explained less variance in ROS for
the Detwiler sequence that captured mostly downslope spread, and the Thomas 4 sequence
where fuel and particularly Santa Ana wind conditions appear to have had greater impact
on ROS relative to Thomas sequences 1–3 [15]. Regression, beta, and standardized beta
coefficients for all regression methods, LSU sizes, and spread sequences showed positive
linear to weakly non-linear relationships between ROS and directional slope. Greater
fit by GWR and significant ANOVA tests reveal that the relationship between ROS and
directional slope is non-stationary and varies at landscape scales. This relationship did not
change significantly with variation in sample size. In addition, the interquartile range of
local GWR coefficient estimates for directional slope were consistently greater than twice
the standard deviation of global (OLS) model estimates.
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3.2. Spatially Weighted and Filtered Regression

GWR and ESF models were fit to all covariate data to (1) assess spatially varied
relationships between covariates and ROS estimates, (2) identify possible violations of OLS
assumptions stemming from spatial non-stationarity and autocorrelation, and (3) account
for/fix any documented occurrences of non-stationarity and spatial autocorrelation. GWR,
ESF, and multiple stepwise regression diagnostics are reported in Table 2. ANOVA tests
comparing OLS and GWR residuals were significant for all sequences and model groups
(p < 0.05).

Table 2. Geographically weighted regression (GWR), eigenvector spatial filtering (ESF) regression,
and multiple stepwise regression diagnostics.

GWR ESF Regression Multiple Stepwise Regression

AIC Adj.
R2

ANOVA
p-Value

Residual
SE AIC VIF

max
Adj.
R2 p-Value AIC VIF

max
Adj.
R2 p-Value

Det.
Vector 1079.96 0.395 0.002 3.83 1061.95 6 0.496 0.013 1121.31 1 0.237 <0.001
25 m 1070.76 0.427 0.026 4.13 1082.34 7 0.414 0.015 1114.46 6 0.268 <0.001
50 m 1072.79 0.421 0.028 3.85 1064.59 9 0.491 0.016 1118.19 6 0.254 <0.001

Th.1
Vector 2511.38 0.553 <0.001 7.08 2460.93 7 0.622 <0.001 2542.85 3 0.505 <0.001
25 m 2512.42 0.552 <0.001 7.09 2463.56 8 0.621 0.003 2534.40 3 0.517 0.001
50 m 2514.60 0.549 <0.001 7.09 2461.52 8 0.621 0.005 2537.71 3 0.512 0.003

Th.2
Vector 2819.99 0.582 <0.001 6.37 2755.96 8 0.671 <0.001 2895.55 4 0.490 0.004
25 m 2818.19 0.586 <0.001 6.25 2744.00 9 0.651 0.002 2886.62 5 0.501 0.004
50 m 2805.79 0.596 <0.001 6.26 2749.32 9 0.649 0.003 2882.78 5 0.504 0.006

Th.3
Vector 738.28 0.577 0.015 3.443 704.54 1 0.706 <0.001 747.61 1 0.543 <0.001
25 m 740.76 0.568 0.010 3.604 710.29 3 0.677 <0.001 751.20 1 0.531 <0.001
50 m 748.47 0.542 0.019 3.605 708.27 4 0.675 0.002 757.16 1 0.508 <0.001

Th.4
Vector 3083.91 0.354 <0.001 12.93 2018.33 4 0.463 <0.001 3133.22 4 0.251 <0.001
25 m 3124.03 0.267 <0.001 12.86 2013.11 5 0.469 <0.001 3124.03 5 0.269 <0.001
50 m 3069.48 0.381 <0.001 12.66 2002.61 5 0.485 <0.001 3119.65 7 0.277 <0.001

Significant ANOVA tests between GWR and OLS models reveal that GWR models
produce a superior data fit. Local coefficient estimates for covariates from GWR models
portray non-stationary relationships with ROS that vary over the spatial extents of imaged
sequences. This is further validated by an increase in GWR fits over stepwise models by
an average adj. R2 of 0.110. Comparably, ESF improved model fit over GWR counterparts
by an average adj. R2 of 0.100. Global Moran’s I tests on bivariate, multiple stepwise, and
geographically weighted model residuals exhibited large variations in levels of spatial
residual autocorrelation. For multiple stepwise regression models, spatial autocorrelation
was most prevalent for 50 m LSU models, and highest for the Detwiler sequence (z-score:
13.552, p-value: < 0.001, Moran’s I: 0.445) and lowest for vector LSU models (Thomas 4:
z-score 3.59, p-value: <0.001, Moran’s I: 0.279). All stepwise regression model residuals
had significant spatial autocorrelation regardless of LSU size. However, ESF models
substantially reduced, or eliminated, spatial autocorrelation of regression model residuals,
as shown in Table 3. Not surprisingly, larger LSU sizes increased residual autocorrelation,
especially for smaller study areas such as Detwiler and Thomas sequence 3.
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Table 3. Residual Moran’s I of 50 m LSU models for stepwise regression and ESF regression.

Stepwise ESF

50 m LSU
Model Moran’s I p-Value Moran’s I p-Value

Detwiler 0.445 <0.001 −0.068 0.659

Thomas 1 0.372 <0.001 0.057 0.732

Thomas 2 0.388 <0.001 −0.059 0.806

Thomas 3 0.441 <0.001 −0.073 0.630

Thomas 4 0.350 <0.001 −0.033 0.745

Comparisons of ESF and OLS (multiple stepwise regression) coefficients are docu-
mented in Table 4. Directional slope relationships with ROS remain largely unchanged
between multiple stepwise and ESF regression counterparts; however, vegetation fractional
cover and spectral vegetation indices varied significantly between models.

Table 4. Stepwise (b1) and ESF (b2) regression coefficient comparison of vector LSU models. Dashes
(—) indicate an insignificant variable in the model.

Stepwise (β1) and Moran’s I Eigenvector Spatial Filtering (β2) Regression Coefficients

Spread Sequence

Detwiler Th.1 Th.2 Th.3 Th.4

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Directional Slope 0.26 0.27 0.53 0.53 0.45 0.41 0.38 0.27 0.56 0.49

Shrub Fraction — — — — — — 3.16 3.98 — —

Herb Fraction 4.35 3.94 19.87 7.11 9.43 9.05 — — — —

Tree Fraction — — −14.55 −25.58 — — — — −29.06 −22.86

Rock/Barren
Fraction — — — — −9.39 −7.05 — — −21.92 −22.81

NDVI — — 19.67 11.40 40.22 23.02 18.19 14.00 51.79 81.88

GRVI — — −98.11 104.56 −102.91 −69.41 — — — —

NDRB — — — — — — — — — —

3.3. Machine Learning Regression

To further examine levels of explanatory power, nonlinearity, and variable interactions
of individual and combined covariate groups on ROS, two machine learning regression
models consisting of regression trees (RTs) and random forest (RF) were trained and
evaluated on all five study sequence data sets; these machine learning model results are
reported in Table 5. LOO CV-RMSE and -R2 diagnostics consistently demonstrate lower
error and stronger prediction when using RF models. Conversely, RT models for the
Detwiler sequence are superior for estimating ROS than the corresponding RF model.
The lowest RMSE and greatest R2 fit was yielded by the Thomas 3 models. The largest
RMSE and lowest R2 resulted for the Thomas 4 group. Measures of variable importance
for all models revealed similar patterns of covariate significance previously reported by
stepwise regression counterparts. Consistently, RT and RF models added, dropped, or
supplemented one to two covariates compared to stepwise models. Directional slope
remained the most significant variable for explaining and predicting ROS, followed by herb
and shrub fractions, then NDVI, and lastly GRVI.
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Table 5. Machine learning model diagnostics. Cross validation (CV) statistics are leave-one-
out (LOO).

CART (Regression Tree) Random Forest

CV RMSE CV R2 Variables Required by Model CV RMSE CV R2 Variable Importance (Top 3)

Det.

Vector 4.60 0.396 slope, herb, shrub, NDVI 4.49 0.322 slope, herb, shrub

25 m 4.74 .399 slope, herb, shrub, GRVI 4.61 0.336 slope, herb, shrub

50 m 4.83 .391 slope, herb, shrub, GRVI 4.81 0.313 slope, herb, shrub

Th. 1

Vector 7.48 0.602 Slope, herb, GRVI, NDRB 7.19 0.643 slope, shrub, GRVI

25 m 7.26 0.620 Slope, shrub, herb, GRVI,
NDRB 6.94 0.650 slope, shrub, herb

50 m 7.48 0.606 Slope, shrub, herb, GRVI,
NDRB 7.14 0.643 slope, shrub, herb

Th.2

Vector 6.79 0.623 slope, herb, rock and barren,
NDVI 6.58 0.657 slope, herb, rock and barren

25 m 6.99 0.604 slope, herb, rock and barren,
NDVI 6.73 0.639 slope, herb, rock and barren

50 m 7.07 0.596 slope, herb, rock and barren,
NDVI 6.82 0.631 slope, herb, NDVI

Th.3

Vector 3.80 0.670 slope, shrub, NDVI, GRVI 3.52 0.667 slope, shrub, NDVI

25 m 3.64 0.711 slope, rock and barren, shrub,
NDVI, GRVI 3.42 0.721 slope, shrub, rock and barren

50 m 4.05 0.692 slope, shrub, herb, NDVI 3.84 0.717 slope, shrub, herb

Th.4

Vector 12.31 0.508 slope, shrub, rock and barren,
NDVI, GRVI 11.40 0.551 slope, shrub, rock and barren

25 m 11.01 0.544 slope, shrub, rock and barren,
NDVI, GRVI 10.61 0.563 slope, shrub, rock and barren

50 m 12.89 0.442 slope, shrub, rock and barren,
NDVI, GRVI 12.69 0.458 slope, shrub, rock and barren

4. Discussion and Conclusion

This study builds on the work of Stow et al. [12,13] and Schag et al. [15] by assessing
whether the size of landscape sampling units impacts statistical relationships between
ROS and landscape covariates, and by exploring whether spatially varying and machine
learning statistical algorithms better model relationships. The methods utilized to address
the research questions included: (1) generating fire progression maps using ATIR image
sequences, (2) creating spread vectors to calculate ROS estimates between sequential fire
fronts, (3) generating LSUs of varying sizes to extract and analyze fuel and terrain covari-
ates, and (4) analyzing relationships between ROS estimates and covariates using bivariate,
multiple regression, spatially weighted and filtered, and machine learning statistical al-
gorithms. The results elucidate relationships between remotely sensed terrain and fuel
sampling schemes and landscape-scale wildfire analyses.
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4.1. Significance of Covariates and LSU Size

Growth form fractions tended to be stronger explanatory variables of fire spread than
SVIs, but generally explained little of the variance in ROS estimates. LSUs within fire spread
sequences that contained high herbaceous cover fractions exhibited a positive relationship
with ROS, whereas a negative relationship resulted for LSUs with large fractions of trees
or rock. This is likely due to homogeneity of vegetation type at the study areas, where
sample unit size had little impact on changing these relationships. In contrast to bivariate
models, fuel covariates were found to be significant in RT models during CC pruning
procedures, which indicates that SVIs and growth forms are necessary for the optimization
of single-tree models [38]. In addition, the importance of fuel covariates in ML models are
validated by the LOO CV-RMSE and -R2 statistics, indicating that RT and RF models are not
overfitted by the incorporation of fuel covariates [39,42]. Improvement in ML predictability
and variable-importance diagnostics suggests a nonlinear relationship between the fuel
covariates and ROS estimates. The nonlinearity of SVIs and growth forms with ROS may
be an artifact of local spatial relationships. GWR regression results indicate that the spatial
association between ROS and remotely sensed fuel covariates are highly variable for each
study area [22,29]. More specifically, GWR models consistently list interquartile ranges
(IQRs) of local coefficient estimates for the fuel covariates as being twice that of the standard
deviation of global model (OLS) estimates [54,55]. This indicates that, although SVI and
fractional cover of growth forms’ relationships with ROS were weak, the relationships
varied significantly over space.

Descriptive analysis of samples in the top 95th percentile of ROS estimates indicates
most of the associated LSUs had shrub or herbaceous cover fractions between 90 and 100%.
Models based on the 25 and 50 m LSUs consistently yielded higher adj. R2, lower AIC,
and lower p-value diagnostics when modeling the effects of shrub and herbaceous cover
fractions. Alternatively, model fits were greater with vector rather than buffered LSUs, for
areas having higher amounts of rock/barren and tree cover. The differing relationships
between fractional cover of growth forms and LSU size with ROS appear to be directly
associated with LSU size and the spatial distribution of the variable being sampled. This
indicates that a smaller sample size (polyline, vectors) may be more effective for evaluating
fractional cover of fuel covariates when sparsely distributed over landscapes. This is likely
attributed to higher sampling variances for the smaller spatial unit. Although buffered
LSUs yielded greater model fits than vector units when sampling more prevalent growth
form types, differences in model coefficients between separate LSU sizes were negligible
and should be studied further.

Most regression results on directional slope are generally similar between study
areas and sample size. However, stronger fits between ROS and directional slope were
documented with the vector sample unit size. This is likely an artifact of the 25 and 50 m
samples capturing disparate slope facets and skewing sample statistics. Like the remotely
sensed fuel covariates, GWR models reveal significant amounts of spatial non-stationarity
on directional slope [22,55]. However, ESF regression coefficients for directional slope
are similar between separate study areas and fire sequences (Table 4), indicating that the
generalized characteristics of terrain are not as easily influenced by sample size compared
to fuel covariates.

4.2. Significance of Combined Covariate Findings

Most of the explanation of the variance by multivariate and ML models is attributed to
directional slope, although fuel covariates increased model predictability. This is generally
what is understood about fire spread controls; how variations in spread rates are typically
the result of complex landscape interactions between fuel, terrain, and weather [64–67].
To help further explain these combined interactions, RT and RF models were trained
and tested using combined covariate data sets. Both RT and RF algorithms consistently
explained more variance in ROS estimates than stepwise, GWR, and ESF models. RT and
RF models revealed exceptional power and potential for quantifying data nonlinearities,
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levels of variable importance, covariate interactions, and predicting fire ROS respective of
a study sequence’s data used to train and validate a model. We further tested RF model
predictability across separate fire events by training RF models with Thomas Fire data
and validated them with Detwiler Fire data. The RF models predicted fire spread rates
for Detwiler Fire exceptionally well (Test-RMSE High: 16.37 m min−1/Test-RMSE Low:
7.92 m min−1). Overall, the exploratory and predictive capability demonstrated by RF
and RT models suggest that machine learning statistical algorithms are valuable tools for
landscape scale wildfire spread analyses and prediction [34].

Previous research employing spatially weighted or filtered regression algorithms for
fire behavior analysis at landscape scales is limited. An important result stemming from
GWR regression is how relationships between covariates and ROS estimates are substan-
tially non-stationary. However, the spatially varying relationships between covariates and
ROS are identifiable using GWR and suggest that the global association of fire spread
controls are locally differentiated on landscape scales [22]. Further, Moran’s I scores are
commonly higher when LSU sizes are larger, likely because buffered LSUs are spaced
closer together, and therefore more susceptible to spatial autocorrelation, thus breaking
the assumptions of OLS models [24,60]. The varying degrees of spatial autocorrelation
(especially with fuel covariates) are attributed to landscape homogeneity and the study’s
sampling structure [34]. The incorporation of eigenvectors into a model using ESF regres-
sion techniques largely eliminated spatial autocorrelation of model residuals [31,32,60].

4.3. Summary

We demonstrate that the scale of research and sampling structure employed in this
study significantly enhances the presence of spatial autocorrelation, and ultimately, model-
ing errors. An important outcome of this study is that regression and machine learning
techniques used to detect and reduce spatial autocorrelation are invaluable for landscape-
scale geospatial wildfire behavior research. The landscape ecological modeling techniques
implemented in this study substantiate the importance of directional slope in controlling
ROS of wildfires burning in chaparral. We demonstrate again that the acquisition and
processing of repetitive ATIR imagery of active wildfires provides valuable information
about landscape-scale properties and controls on wildfire behavior.
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