Airborne Passive Bistatic Radar Clutter Suppression Algorithm Based on Root Off-Grid Sparse Bayesian Learning
Abstract
:1. Introduction
2. Method
2.1. Signal Model of PBR System and Traditional STAP
2.1.1. Signal Model of PBR System
2.1.2. Traditional STAP
2.2. STAP Algorithm Based on Root Sparse Bayes Learning
2.2.1. Sparse Recovery Model of Space–Time Clutter
2.2.2. STAP Based on Root Off-Grid Sparse Bayesian Learning
2.2.3. Pseudo Resampling Root Off-Grid Sparse Bayesian Learning STAP Algorithm
2.3. Algorithm Summary
Algorithm 1. ROG-SBL STAP Algorithm |
(1) Set the independent and identically distributed training samples of the airborne PRB as the observation vector in Equation (10). |
(2) Initialization: the variable , ; hyperparameters , ; the algorithm iteration convergence threshold ; and the maximum number of iterations . |
(3) When the number of iterations and , continue steps (4), (5), and (6). |
(4) Update and from Equations (16) and (17). |
(5) Update and from Equations (19) and (20). |
(6) Update from Equation (26), then go back to step (3). |
(7) Add artificial noise according to Equation (27). |
(8) If , is the final estimate value. |
(9) If , re-estimate according to Equations (30) and (31). |
(10) Estimate based on the obtained , , , and according to Equations (13) and (14). |
(11) Estimate of the airborne PBR based on and in Equation (6), end. |
3. Results
3.1. Spatial–Temporal Clutter Spectrum
3.2. Improvement Factor of Signal-to-Noise Ratio
3.3. Performance with Dictionary Grid Width
3.4. Improved Performance with Singular Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuschel, H.; Cristallini, D. Olsen K E. Tutorial: Passive radar tutorial. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 2–19. [Google Scholar] [CrossRef]
- Griffithsm, H.; Baker, C.J. An Introduction to Passive Radar; Artech House: Norwood, MA, USA, 2017. [Google Scholar]
- Malanowski, M. Signal Processing for Passive Bistatic Radar; Artech House: Norwood, MA, USA, 2019. [Google Scholar]
- Li, Y.; Ma, H.; Cheng, L.; Yu, D. Method for bearing estimation of target for amplitude modulation radio-based passive radar application. Electron. Lett. 2018, 54, 383–385. [Google Scholar] [CrossRef]
- Colone, F. DVB-T-Based Passive Forward Scatter Radar: Inherent Limitations and Enabling Solutions. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 1084–1104. [Google Scholar] [CrossRef]
- Sun, H.; Chia, L.G.; Razul, S.G. Through-Wall Human Sensing with WiFi Passive Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2135–2148. [Google Scholar] [CrossRef]
- Imperatore, P. SAR Imaging Distortions Induced by Topography: A Compact Analytical Formulation for Radiometric Calibration. Remote Sens. 2021, 13, 3318. [Google Scholar] [CrossRef]
- Andriyanov, N.; Andriyanov, D. Modeling and processing of SAR images. In Proceedings of the VI International Conference Information Technology and Nanotechnology, Samara, Russia, 26–29 May 2020. [Google Scholar]
- Zhu, Y.; Liang, S.; Gong, M.; Yan, J. Decomposed POMDP Optimization-Based Sensor Management for Multi-Target Tracking in Passive Multi-Sensor Systems. IEEE Sens. J. 2022, 22, 3565–3578. [Google Scholar] [CrossRef]
- Tan, D.K.P.; Lesturgie, M.; Sun, H.; Lu, Y. Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity. IET Radar Sonar Navig. 2014, 8, 142–152. [Google Scholar] [CrossRef]
- Qi, D.; Feng, B.; Feng, W.; Zhang, Z.; He, X.; Shang, C. Digital TV Signal Based Airborne Passive Radar Clutter Suppression via a Parameter-Searched Algorithm. Wirel. Pers. Commun. 2021, 120, 3189–3216. [Google Scholar] [CrossRef]
- Rosenberg, L.; Duk, V. Land Clutter Statistics from an Airborne Passive Bistatic Radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5104009. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, J. Cascaded suppression method based on joint iterative optimization for airborne passive radar. Digit. Signal Process. 2020, 100, 102686. [Google Scholar] [CrossRef]
- Sui, J.X.; Wang, J.; Zuo, L.; Gao, J. Cascaded Least Square Algorithm for Strong Clutter Removal in Airborne Passive Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 679–696. [Google Scholar] [CrossRef]
- Yang, P.-C.; Lyu, X.-D.; Chai, Z.-H.; Zhang, D.; Yue, Q.; Yang, J.-M. Clutter Cancellation Along the Clutter Ridge for Airborne Passive Radar. IEEE Geosci. Remote Sens. Lett. 2017, 14, 951–955. [Google Scholar] [CrossRef]
- Guo, S.; Wang, J.; Ma, H.; Wang, J. Modified Blind Equalization Algorithm Based on Cyclostationarity for Contaminated Reference Signal in Airborne PBR. Sensors 2020, 20, 788. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Wang, J.; Sui, J.; Li, N. An Inter-Subband Processing Algorithm for Complex Clutter Suppression in Passive Bistatic Radar. Remote Sens. 2021, 13, 4954. [Google Scholar] [CrossRef]
- Guerci, J.R. Space-Time Adaptive Processing for Radar; Artech House: Norwood, MA, USA, 2014. [Google Scholar]
- Melvin, W. A STAP Overview. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 19–35. [Google Scholar] [CrossRef]
- Ward, J. Space-Time Adaptive Processing for Airborne Radar. Technical Report 1015; MIT Lincoln Lab.: Lexington, MA, USA, 1994. [Google Scholar]
- Klemm, R. Adaptive airborne MTI: An auxiliary channel approach. IEE Proc. F Commun. Radar Signal Process. 1987, 134, 269–276. [Google Scholar] [CrossRef]
- Wang, H.; Cai, L. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 660–670. [Google Scholar] [CrossRef]
- Goldstein, J.; Reed, I.; Scharf, L. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. Inf. Theory 1998, 44, 2943–2959. [Google Scholar] [CrossRef]
- Shen, M.; Zhu, D.; Zhu, Z. Reduced-rank space-time adaptive processing using a modified projection approximation subspace tracking deflation approach. IET Radar Sonar Navig. 2009, 3, 93–100. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Wang, H.; Jiang, W. On Clutter Sparsity Analysis in Space–Time Adaptive Processing Airborne Radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1214–1218. [Google Scholar] [CrossRef]
- Sun, K.; Meng, H.; Lapierre, F.D.; Wang, X. Registration-based compensation using sparse representation in conformal-array STAP. Signal Process. 2011, 91, 2268–2276. [Google Scholar] [CrossRef]
- Sun, K.; Meng, H.; Wang, Y.; Wang, X. Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 2011, 91, 2222–2236. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Wang, H. Space-Time Adaptive Processing Based on Weighted Regularized Sparse Recovery. Prog. Electromagn. Res. B 2012, 42, 245–262. [Google Scholar] [CrossRef]
- He, P.; He, S.; Yang, Z.; Huang, P. An Off-Grid STAP Algorithm Based on Local Mesh Splitting with Bistatic Radar System. IEEE Signal Process. Lett. 2020, 27, 1355–1359. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Su, Y. A fast and gridless STAP algorithm based on mixed-norm minimisation and the alternating direction method of multipliers. IET Radar Sonar Navig. 2021, 15, 1340–1352. [Google Scholar] [CrossRef]
- Feng, W.; Guo, Y.; Zhang, Y.; Gong, J. Airborne radar space time adaptive processing based on atomic norm minimization. Signal Process. 2018, 148, 31–40. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian shrinkage and selection learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Wu, Q.; Zhang, Y.D.; Amin, M.G.; Himed, B. Space–Time Adaptive Processing and Motion Parameter Estimation in Multistatic Passive Radar Using Sparse Bayesian Learning. IEEE Trans. Geosci. Remote Sens. 2015, 54, 944–957. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Trans. Signal Process. 2012, 61, 38–43. [Google Scholar] [CrossRef]
- Dai, J.; Bao, X.; Xu, W.; Chang, C. Root Sparse Bayesian Learning for Off-Grid DOA Estimation. IEEE Signal Process. Lett. 2016, 24, 46–50. [Google Scholar] [CrossRef]
- Wang, H.; Wan, L.; Dong, M.; Ota, K.; Wang, X. Assistant Vehicle Localization Based on Three Collaborative Base Stations via SBL-Based Robust DOA Estimation. IEEE Internet Things J. 2019, 6, 5766–5777. [Google Scholar] [CrossRef]
- Palakkal, V.; Ramalingam, C.S. Improving the Estimation of Sinusoidal Frequencies and Direction-of-Arrival Using Line Spectral Frequencies. IEEE Signal Process. Lett. 2018, 25, 1780–1784. [Google Scholar] [CrossRef]
- Vasylyshyn, V. Improving the performance of Root-MUSIC via pseudo-noise resampling and conventional beamformer. In Proceedings of the 2011 Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, 25–27 August 2011. [Google Scholar]
- Vasylyshyn, V. Threshold Performance Improvement of DOA Estimation using Pseudo-Noise Resampling and Toeplitz Covariance Matrix Approximation. In Proceedings of the 2020 IEEE Ukrainian Microwave Week, Kharkiv, Ukraine, 21–25 September 2020. [Google Scholar]
Notations | Definition |
---|---|
capital bold letters | the matrices |
lowercase bold letters | the vectors |
the conjugate operation | |
the transpose operation | |
the conjugate transpose operation | |
the inverse operation | |
find the mathematical expectation | |
complex matrix set | |
the Kronecker product | |
the L2 norm |
Parameter | Value |
---|---|
equivalent pulse repetition frequency | 1600 Hz |
signal bandwidth | 2 MHz |
signal wavelength | 1.5 m |
main beam direction | side-looking |
airborne PBR velocity | 300 m/s |
moving emitter velocity | 7000 m/s |
airborne PBR height | 7000 m |
moving emitter height | 20,000 km |
length of base | 20,500 km |
relative motion relationship | Relationship 1, relationship 2, relationship 3 and relationship 4 |
array element spacing | 0.75 m |
number of antenna elements | 16 |
number of equivalent pulses | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, J.; Zuo, L.; Guo, S.; Zhao, D. Airborne Passive Bistatic Radar Clutter Suppression Algorithm Based on Root Off-Grid Sparse Bayesian Learning. Remote Sens. 2022, 14, 3963. https://doi.org/10.3390/rs14163963
Wang J, Wang J, Zuo L, Guo S, Zhao D. Airborne Passive Bistatic Radar Clutter Suppression Algorithm Based on Root Off-Grid Sparse Bayesian Learning. Remote Sensing. 2022; 14(16):3963. https://doi.org/10.3390/rs14163963
Chicago/Turabian StyleWang, Jipeng, Jun Wang, Luo Zuo, Shuai Guo, and Dawei Zhao. 2022. "Airborne Passive Bistatic Radar Clutter Suppression Algorithm Based on Root Off-Grid Sparse Bayesian Learning" Remote Sensing 14, no. 16: 3963. https://doi.org/10.3390/rs14163963
APA StyleWang, J., Wang, J., Zuo, L., Guo, S., & Zhao, D. (2022). Airborne Passive Bistatic Radar Clutter Suppression Algorithm Based on Root Off-Grid Sparse Bayesian Learning. Remote Sensing, 14(16), 3963. https://doi.org/10.3390/rs14163963