Evaluation of SNPP and NOAA-20 VIIRS Datasets Using RadCalNet and Landsat 8/OLI Data
Abstract
:1. Introduction
2. RadCalNet Site and Sensor Overview
2.1. RadCalNet RVUS Site Overview
2.2. Sensor Overview
2.2.1. Landsat 8/OLI
2.2.2. SNPP and NOAA-20/VIIRS
3. Methodology
3.1. Image ROI Reflectance Extraction
3.2. RadCalNet RVUS Reflectance Extraction
3.3. Cloud and Cloud Shadow Filtering
3.4. Image View Zenith Angle Selection
3.5. Radiometric Performance and Stability Analysis
3.6. Time Selection of Data for Analysis
4. Results
4.1. SNPP Operational and Reprocessed Data Comparison Results
4.1.1. Comparison Results of the Reflectance Ratio Percentage
4.1.2. Comparison Results of Yearly Drift
4.2. SNPP and NOAA-20 Comparison Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, C.; Zhang, B.; Shao, X.; Wang, W.; Uprety, S.; Choi, T.; Blonski, S.; Gu, Y.; Bai, Y.; Lin, L.; et al. Mission-Long Recalibrated Science Quality Suomi NPP VIIRS Radiometric Dataset Using Advanced Algorithms for Time Series Studies. Remote Sens. 2021, 13, 1075. [Google Scholar] [CrossRef]
- Jing, X.; Leigh, L.; Pinto, C.T.; Helder, D. Evaluation of RadCalNet Output Data Using Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B Sensors. Remote Sens. 2019, 11, 541. [Google Scholar] [CrossRef]
- Bouvet, M.; Thome, K.; Berthelot, B.; Bialek, A.; Czapla-Myers, J.; Fox, N.P.; Woolliams, E.R. RadCalNet: A radiometric calibration network for Earth observing imagers operating in the visible to shortwave infrared spectral range. Remote Sens. 2019, 11, 2401. [Google Scholar] [CrossRef]
- RadCalNet Technical Working Group. RadCalNet Guidance: Instrumentation and Data Processing (QA4EO-WGCV-RadCalNet-G3_v1); Committee on Earth Observation Satellites. 2018. Available online: https://www.radcalnet.org/documentation/RadCalNetGenDoc/G3-RadCalNetGuidance-InstrumentationAndDataProcessing_V1.pdf (accessed on 5 March 2022).
- Czapla-Myers, J.S.; Thome, K.J.; Leisso, N.P. Radiometric calibration of earth-observing sensors using an automated test site at Railroad Valley, Nevada. Can. J. Remote Sens. 2010, 36, 474–487. [Google Scholar] [CrossRef]
- University of Arizona. RadCalNet Site Description (QA4EO-WGCV-IVO-CSP-002_RVUS); Committee on Earth Observation Satellites: Railroad Valley, NV, USA, 2016. [Google Scholar]
- Czapla-Myers, J.; Thome, K.; Wenny, B.; Anderson, N. Railroad Valley Radiometric Calibration Test Site (RadCaTS) as Part of a Global Radiometric Calibration Network (RadCalNet). In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6413–6416. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Mishra, N. The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Reuter, D.; Richardson, C.; Irons, J.; Allen, R.; Anderson, M.; Budinoff, J.; Whitehouse, P. The Thermal Infrared Sensor on the Landsat Data Continuity Mission. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 754–757. [Google Scholar]
- Markham, B.L.; Barsi, J.A. Landsat-8 Operational Land Imager On-Orbit Radiometric Calibration. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4205–4207. [Google Scholar] [CrossRef]
- USGS. 2017. Available online: https://www.usgs.gov/landsat-missions/landsat-8-oli-and-tirs-calibration-notices (accessed on 19 July 2022).
- Micijevic, E.; Haque, O.; Mishra, N. Radiometric calibration updates to the Landsat collection. In Proceedings of the In Earth Observing Systems XXI, San Diego, CA, USA, 28 August–1 September 2016. [Google Scholar] [CrossRef]
- USGS. Retrieved March 10. 2022. Available online: https://www.usgs.gov/landsat-missions/may-10-2017-landsat-4-8-collection-1-processing-complete (accessed on 12 June 2022).
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Zanter, K. Landsat 8 (L8) Data Users Handbook. Landsat Science Official Website. 2019. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (accessed on 19 July 2022).
- Uprety, S.; Cao, C. Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites. Remote Sens. Environ. 2015, 166, 106–115. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Xiong, X.; Blonski, S.; Wu, A.; Shao, X. Radiometric Intercomparison between Suomi-NPP VIIRS and Aqua MODIS Reflective Solar Bands Using Simultaneous Nadir Overpass in the Low Latitudes. J. Atmos. Ocean. Technol. 2013, 30, 2720–2736. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11664–11678. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, Y.; Li, C.; Ma, L.; Wang, N.; Qian, Y.; Ren, L. An Investigation of a Novel Cross-Calibration Method of FY-3C/VIRR against NPP/VIIRS in the Dunhuang Test Site. Remote Sens. 2016, 8, 77. [Google Scholar] [CrossRef]
- Mu, Q.; Xiong, X.; Chang, T.; Wu, A. Exploring the stability and residual response versus scan angle effects in SNPP VIIRS sensor data record reflectance products using deep convective clouds. J. Appl. Remote Sens. 2018, 12, 034006. [Google Scholar] [CrossRef]
- Chang, T.; Xiong, X.; Mu, Q. VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7009–7017. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.; Coddington, O.; Scarino, B.; Gopalan, A.; Haney, C. Quantifying the Impact of Solar Spectra on the Inter-Calibration of Satellite Instruments. Remote Sens. 2021, 13, 1438. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Zhou, L.; Lin, L.; Sun, N.; Chen, Y.; Flynn, L.E.; Zhang, B.; Cao, C.; Iturbide-Sanchez, F.; Beck, T.; et al. The Reprocessed Suomi NPP Satellite Observations. Remote Sens. 2020, 12, 2891. [Google Scholar] [CrossRef]
- RadCalNet Technical Working Group. RadCalNet Data Format Specification (QA4EO-WGCV-RadCalNet-R2). Committee on Earth Observation Satellites, 26 November. 2019. Available online: https://www.radcalnet.org/documentation/RadCalNetGenDoc/R2-RadCalNetRequirements-DataFormatSpecification_V10.pdf (accessed on 12 June 2022).
- Jing, X.; Leigh, L.; Helder, D.; Pinto, C.T.; Aaron, D. Lifetime Absolute Calibration of the EO-1 Hyperion Sensor and its Validation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9466–9475. [Google Scholar] [CrossRef]
- Kaewmanee, M. Pseudo invariant calibration sites: PICS evolution. In Proceedings of the CALCON 2018, Logan, UT, USA, 18–20 June 2018. [Google Scholar]
- Uprety, S.; Cao, C. Radiometric performance assessment of Suomi NPP VIIRS SWIR Band (2.25 μm). Earth Obs. Syst. 2015, 9607, 96072C. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Blonski, S.; Shao, X. Evaluating NOAA-20 and S-NPP VIIRS Radiometric Consistency. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization V; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; p. 107810V. [Google Scholar]
- Jing, X.; Liu, T.-C.; Shao, X.; Uprtey, S.; Zhang, B.; Sharma, A.S. Validation of GOES-16 ABI VNIR channel radiometric performance with NPP and NOAA-20 VIIRS over the Sonoran Desert. J. Appl. Remote Sens. 2020, 14, 044517. [Google Scholar] [CrossRef]
- Wu, A.; Chang, T.; Xiong, X.; Cao, C. Initial Assessment of Radiometric Performance of N20 VIIRS Reflective Solar Bands Using Vicarious Approaches. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization V; SPIE: Bellingham, WA, USA, 2018; pp. 142–153. [Google Scholar]
- Moyer, D.I.; Uprety, S.; Wang, W.; Cao, C.; Guch, I. S-NPP/NOAA-20 VIIRS reflective solar bands on-orbit calibration bias investigation. Int. Soc. Opt. Eng. 2021, 11829, 1182912. [Google Scholar] [CrossRef]
NPP and NOAA-20/VIIRS | Landsat 8/OLI | ||||
---|---|---|---|---|---|
Launch | 28 October 2011 and 18 November 2017 | 11 February 2013 | |||
Wavelength (um) | Spatial Resolution (m) | Wavelength (um) | Spatial Resolution (m) | ||
M1 | 0.402–0.422 | 750 | |||
M2 | 0.436–0.454 | 750 | B1 | 0.43–0.45 | 30 |
M3 | 0.478–0.488 | 750 | B2 | 0.45–0.51 | 30 |
M4 | 0.545–0.565 | 750 | B3 | 0.53–0.59 | 30 |
M5 | 0.662–0.682 | 750 | B4 | 0.64–0.67 | 30 |
M7 | 0.846–0.885 | 750 | B5 | 0.85–0.88 | 30 |
M8 | 1.23–1.25 | 750 | |||
M10 | 1.58–1.64 | 750 | B6 | 1.57–1.65 | 30 |
M11 | 2.23–2.28 | 750 | B7 | 2.11–2.29 | 30 |
Number of Data Points | |||
---|---|---|---|
L8 | SNPP | N20 | |
Time period | 1 May 2013 to 1 September 2019 | 1 February 2018 to 1 September 2019 | |
collocation | 44 | 1042 | 251 |
TCC | 44 | 949 | 227 |
VZA | 44 | 150 | 28 |
Sensor vs. RVUS (Bias% ± Standard Deviation%) | |||
---|---|---|---|
Landsat 8/OLI | SNPP/VIIRS Operational | SNPP/VIIRS Reprocess | |
M1 | N/A | −1.23 ± 5.32 | −1.20 ± 4.83 |
M2/B1 | −2.29 ± 4.63 | −1.77 ± 5.63 | −1.19 ± 5.34 |
M3/B2 | −1.45 ± 5.08 | −0.46 ± 5.98 | 0.05 ± 5.74 |
M4/B3 | −0.28 ± 4.95 | −0.03 ± 5.64 | 0.69 ± 5.54 |
M5/B4 | 1.28 ± 4.35 | 3.56 ± 5.25 | 1.66 ± 5.00 |
M7/B5 | 1.71 ± 3.97 | 3.02 ± 4.92 | 0.58 ± 4.71 |
M8 | N/A | 5.57 ± 5.12 | 4.96 ± 5.07 |
M10/B6 | 2.86 ± 3.48 | 6.12 ± 4.73 | 5.97 ± 4.83 |
M11/B7 | 3.97 ± 5.93 | 7.70 ± 7.62 | 7.68 ± 7.84 |
SNPP VS. Landsat 8 (Bias%) | ||
---|---|---|
SNPP/VIIRS Operational-L8 | SNPP/VIIRS Reprocess-L8 | |
M1 | N/A | N/A |
M2/B1 | 0.52 | 1.10 |
M3/B2 | 0.99 | 1.50 |
M4/B3 | 0.25 | 0.97 |
M5/B4 | 2.28 | 0.38 |
M7/B5 | 1.31 | −1.13 |
M8 | N/A | N/A |
M10/B6 | 3.26 | 3.11 |
M11/B7 | 3.73 | 3.71 |
Yearly Drift% ± 95% Confidence Interval | Yearly Drift Difference% | ||||
---|---|---|---|---|---|
Landsat 8/OLI | SNPP/VIIRS Operational | SNPP/VIIRS Reprocess | SNPP/VIIRS Operational-OLI | SNPP/VIIRS Reprocess-OLI | |
M1 | N/A | 0.43 ± 0.45 | 0.30 ± 0.43 | N/A | N/A |
M2 | 0.32 ± 0.82 | 0.39 ± 0.48 | 0.32 ± 0.48 | 0.07 | 0.00 |
M3 | 0.37 ± 0.91 | 0.52 ± 0.51 | 0.38 ± 0.52 | 0.15 | 0.01 |
M4 | 0.31 ± 0.92 | 0.43 ± 0.48 | 0.41 ± 0.50 | 0.12 | 0.10 |
M5 | 0.27 ± 0.86 | 0.43 ± 0.45 | 0.24 ± 0.45 | 0.16 | −0.03 |
M7 | 0.34 ± 0.77 | 0.47 ± 0.42 | 0.33 ± 0.42 | 0.13 | −0.01 |
M8 | N/A | 0.67 ± 0.43 | 0.45 ± 0.45 | N/A | N/A |
M10 | 0.34 ± 0.68 | 0.44 ± 0.40 | 0.30 ± 0.43 | 0.10 | −0.04 |
M11 | 0.36 ± 1.03 | 0.60 ± 0.65 | 0.36 ± 0.71 | 0.24 | 0.00 |
Reflectance Ratio% ± Standard Deviation% | Reflectance Ratio% | ||
---|---|---|---|
SNPP/VIIRS Reprocess | NOAA-20/VIIRS | Double Difference Reprocessed SNPP-NOAA-20 | |
M1 | −0.36 ± 6.24 | −3.30 ± 6.37 | 2.94 |
M2 | −0.24 ± 7.07 | −2.68 ± 6.96 | 2.44 |
M3 | 1.13 ± 7.58 | −1.58 ± 7.46 | 2.71 |
M4 | 1.90 ± 6.92 | −0.99 ± 7.00 | 2.89 |
M5 | 2.71 ± 5.87 | 1.08 ± 6.15 | 1.63 |
M7 | 1.50 ± 5.28 | 0.45 ± 5.29 | 1.05 |
M8 | 5.81 ± 4.73 | 3.14 ± 4.25 | 2.67 |
M10 | 6.67 ± 3.83 | 4.20 ± 3.12 | 2.47 |
M11 | 7.23 ± 6.19 | 6.87 ± 6.27 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Uprety, S.; Liu, T.-C.; Zhang, B.; Shao, X. Evaluation of SNPP and NOAA-20 VIIRS Datasets Using RadCalNet and Landsat 8/OLI Data. Remote Sens. 2022, 14, 3913. https://doi.org/10.3390/rs14163913
Jing X, Uprety S, Liu T-C, Zhang B, Shao X. Evaluation of SNPP and NOAA-20 VIIRS Datasets Using RadCalNet and Landsat 8/OLI Data. Remote Sensing. 2022; 14(16):3913. https://doi.org/10.3390/rs14163913
Chicago/Turabian StyleJing, Xin, Sirish Uprety, Tung-Chang Liu, Bin Zhang, and Xi Shao. 2022. "Evaluation of SNPP and NOAA-20 VIIRS Datasets Using RadCalNet and Landsat 8/OLI Data" Remote Sensing 14, no. 16: 3913. https://doi.org/10.3390/rs14163913
APA StyleJing, X., Uprety, S., Liu, T. -C., Zhang, B., & Shao, X. (2022). Evaluation of SNPP and NOAA-20 VIIRS Datasets Using RadCalNet and Landsat 8/OLI Data. Remote Sensing, 14(16), 3913. https://doi.org/10.3390/rs14163913