Identifying Oceanic Responses with Validated Satellite Observations after the Passage of Typhoons in the Northern South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Typhoon Feature and Tracks
2.2. Dataset of Oceanic and Atmospheric Features
2.3. In Situ Observations and Validation of Remotely Sensed Data
3. Results
3.1. Spatial Pattern of Typhoon and Typhoon-Induced Changes
3.2. Eddy-Modulated Ocean Surface Changes along the Typhoon Track
4. Discussion
4.1. Dynamics Determine Typhoon-Induced upper Ocean Responses
4.2. Modulation of Typhoon-Forced Oceanic Responses by Pre-Existing Mesoscale Eddies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zu, T.; Wang, D.; Wang, Q.; Li, M.; Wei, J.; Geng, B.; He, Y.; Chen, J. A revisit of the interannual variation of the South China Sea upper layer circulation in summer: Correlation between the eastward jet and northward branch. Clim. Dyn. 2020, 54, 457–471. [Google Scholar] [CrossRef]
- Yu, Y.; Xing, X.G.; Liu, H.L.; Yuan, Y.P.; Wang, Y.T.; Chai, F. The variability of chlorophyll-a and its relationship with dynamic factors in the basin of the South China Sea. J. Mar. Syst. 2019, 200, 103230. [Google Scholar] [CrossRef]
- Wang, Y. Composite of typhoon induced sea surface temperature and chlorophyll-a responses in the South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2020JC016243. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, D. Intraseasonal variability of latent-heat flux in the South China Sea. Theor. Appl. Climatol. 2009, 97, 53–64. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, W.Z.; Shang, S.P.; Hong, H.S. Ocean response to typhoons in the western North Pacific: Composite results from Argo data. Deep-Sea Res. I 2017, 123, 62–74. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, R.H.; Chen, D.K.; Liu, X.H.; He, H.; Tang, Y.; Ke, D.; Shen, Z.; Li, J.; Xie, J.; et al. Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014). J. Geophys. Res. Ocean. 2018, 122, 7154–7171. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.M.; Tang, D.L. Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Mar. Ecol. Prog. Ser. 2007, 333, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.D.; Zhao, W.; Huthnance, J.; Tian, J.W.; Wang, J.H. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 3134–3157. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Tang, D.L.; Wang, D. Phytoplankton blooms near the Pearl River Estuary induced by typhoon Nuri. J. Geophys. Res. Ocean. 2009, 114, C12027. [Google Scholar] [CrossRef]
- Ye, H.J.; Sui, Y.; Tang, D.L.; Afanasyev, Y.D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 2013, 128, 138–145. [Google Scholar] [CrossRef]
- Monaldo, F.M.; Sikora, T.D.; Babin, S.M.; Sterner, R.E. Satellite Imagery of Sea Surface Temperature Cooling in the Wake of Hurricane Edouard (1996). Mon. Weather Rev. 1997, 125, 2716–2721. [Google Scholar] [CrossRef]
- Sun, J.R.; Oey, L.Y.; Chang, R.; Xu, F.H.; Huang, S.-M. Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea. Ocean Dynam. 2015, 65, 735–749. [Google Scholar] [CrossRef]
- Glenn, S.; Miles, T.; Seroka, G.; Xu, Y.; Forney, R.; Yu, F.; Forney, R.K.; Yu, F.; Roarty, H.; Schofield, O.; et al. Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 2016, 7, 10887. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.I.; Liu, W.T.; Wu, C.C.; Wong, G.T.F.; Hu, C.; Chen, Z.; Liang, W.-D.; Yang, Y.; Liu, K.-K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30, 51. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Yang, Y.J.; Tao, X.; Lu, Z.M.; Fu, Y.F. Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar. Ecol. Prog. Ser. 2010, 404, 39–50. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tang, D.L. Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea. Int. J. Remote Sens. 2012, 33, 7444–7457. [Google Scholar] [CrossRef]
- Zhao, H.; Han, G.; Zhang, S.; Wang, D. Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma. J. Geophys. Res. Biogeosci. 2013, 118, 412–421. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, D.L.; Wang, Y. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the south china sea. Mar. Eco. Prog. Ser. 2008, 365, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109, C03043. [Google Scholar] [CrossRef]
- Chai, F.; Wang, Y.; Xing, X.; Yan, Y.; Xue, H.; Wells, M.; Boss, E. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 2021, 18, 849–859. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Ziemann, D.; Kolber, Z.; Bienfang, P.K. Role of eddy pumping in enhancing primary production in the ocean. Nature 1991, 352, 55–58. [Google Scholar] [CrossRef]
- McGillicuddy, D.J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, N.D.; Leben, R.R.; Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a, enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 2005, 32, L18610. [Google Scholar] [CrossRef]
- Xiu, P.; Chai, F.; Shi, L.; Xue, H.J.; Chao, Y. A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res. 2010, 115, C03012. [Google Scholar] [CrossRef] [Green Version]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Ocean. 2013, 118, 6349–6370. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Chai, F.; Xue, H.; Cai, Y.; Liu, C.; Shi, J. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 2004, 109, C10005. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C.; Fan, C.W.; Lozano, C.J.; Kerling, J.L. An airborne expendable bathythermograph survey of the South China Sea, May 1995. J. Geophys. Res. 1998, 103, 21637–21652. [Google Scholar] [CrossRef]
- Su, J.L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont. Shelf Res. 2004, 24, 1745–1760. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Kaneko, A.; Su, J.L. Recent progress in studies of the South China Sea circulation. J. Oceanogr. 2008, 64, 753–762. [Google Scholar] [CrossRef]
- Tang, D.L.; Kawamura, H.; Luis, A.J. Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sens. Environ. 2002, 81, 82–89. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Chen, H.-Y.; Lin, I.-I.; Lee, M.-A.; Chang, J. Effects of cold eddy on phytoplankton production and assemblages in Luzon strait bordering the south china sea. J. Oceanogr. 2007, 63, 671–683. [Google Scholar] [CrossRef]
- Chow, C.-H.; Hu, J.-H.; Centurioni, L.R.; Niiler, P.P. Mesoscale Dongsha Cyclonic Eddy in the northern South China Sea by drifter and satellite observations. J. Geophys. Res. Ocean. 2008, 113, C04018. [Google Scholar] [CrossRef]
- Lin, I.I.; Pun, I.F.; Wu, C.C. Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Mon. Weather Rev. 2009, 137, 3744–3757. [Google Scholar] [CrossRef]
- Yu, J.; Lin, S.; Jiang, Y.; Wang, Y. Modulation of typhoon-induced sea surface cooling by preexisting eddies in the South China Sea. Water 2021, 13, 653. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Unger, D.; Krumme, U.; Liu, S.M.; Jennerjahn, T.C. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar. Coast. Shelf Sci. 2011, 93, 375–388. [Google Scholar] [CrossRef]
- Smith, S.D. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. Ocean. 1988, 93, 15467–15472. [Google Scholar] [CrossRef]
- Makin, V.K.; Kudryavtsev, V.N.; Mastenbroek, C. Drag of the sea surface. Bound.-Layer Meteorol. 1995, 73, 159–182. [Google Scholar] [CrossRef]
- Ren, L.; Yang, J.; Zheng, G.; Wang, J. Wind speed retrieval from Ku-band Tropical Rainfall Mapping Mission precipitation radar data at low incidence angles. J. Appl. Remote Sens. 2016, 10, 016012. [Google Scholar] [CrossRef]
- Oey, L.Y.; Ezer, T.; Wang, D.P.; Yin, X.Q.; Fan, S.J. Hurricane-induced motions and interaction with ocean currents. Cont. Shelf Res. 2007, 27, 1249–1263. [Google Scholar] [CrossRef]
- Stewart, R.H. Introduction to Physical Oceanography; Texas A&M University: College Station, TX, USA, 2007. [Google Scholar]
- Dreano, D.; Raitsos, D.E.; Gittings, J.; Krokos, G.; Hoteit, I. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms. PLoS ONE 2016, 11, e0168440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R.; Dumas, F. Detection and tracking of mesoscale eddies in the Mediterranean Sea: A comparison between the sea level anomaly and the absolute dynamic topography fields. Adv. Space Res. 2021, 68, 401–419. [Google Scholar] [CrossRef]
- Ruti, P.M.; Marullo, S.D.; Ortenzio, F.; Tremant, M. Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: Analyses, QuikSCAT and buoy data. J. Mar. Syst. 2008, 70, 33–48. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Lin, I.I.; Liu, W.T.; Wu, C.C.; Chiang, J.C.H.; Sui, C.H. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett. 2003, 30, 1131. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Lin, I.-I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Ocean. 2012, 117, C03039. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Liu, H.; Hu, Z.; Sun, Z.; Zhu, m.; Guo, S.; Sun, S. The effects of a warm-core eddy on chlorophyll a distribution and phytoplankton community structure in the northern South China Sea in spring 2017. J. Mar. Syst. 2020, 210, 103396. [Google Scholar] [CrossRef]
- Michelle, M.G.; Subrahmanyam, B. Biophysical responses of the upper ocean to major Gulf of Mexico hurricanes in 2005. J. Geophys. Res. 2008, 113, C04029. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Wei, S. A study of a Hurricane Katrina–induced phytoplankton bloom using satellite observations and model simulations. J. Geophys. Res. Ocean. 2009, 114, C03023. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.F.; Liang, C.J.; Hu, J.Y.; Meng, Q.C.; Lü, H.B.; Wang, Y.T.; Lin, F.L.; Chen, X.Y.; Liu, X.H. Modulation Effect of Mesoscale Eddies on Sequential Typhoon-Induced Oceanic Responses in the South China Sea. Remote Sens. 2020, 12, 3059. [Google Scholar] [CrossRef]
- Liu, F.; Tang, S. Influence of the interaction between typhoons and oceanic mesoscale eddies on phytoplankton blooms. J. Geophys. Res. Ocean. 2018, 123, 2785–2794. [Google Scholar] [CrossRef]
Typhoon Name (ID) | Kammuri (ID: 0809) | Nuri (ID: 0812) | Hagupit (ID: 0814) |
---|---|---|---|
Start and end date | 3–8 August | 17–23 August | 17–23 September |
Maximum sustained wind speed (m s−1) | 25.7 (00:00–06:00 6 August) | 38.6 (06:00 19 August to 18:00 20 August) | 46.3 (18:00 23 September) |
Mean translation speed (m s−1) in study region | 4.2 | 4.7 | 8.0 |
Averaged radius (km) with wind speed > 27 m s−1 | / | 67.0 | 82.3 |
Averaged radius (km) with wind speed > 15 m s−1 | 185.5 | 179.0 | 224.5 |
Box | Location of Vertices | Eddy | Eddy Center Location | Period of Eddy | Mean Radius of Eddy (km) | Existence of Eddy during Typhoon | ||
---|---|---|---|---|---|---|---|---|
Kammuri | Nuri | Hagupit | ||||||
Lbox | 23.3°N, 115.1°E; 21.9°N, 114.6°E; 19.6°N, 121.1°E; 21.0°N, 121.6°E | ACE2 * | 117.93°E, 17.89°N | 1 August–8 October | 82 | Y | Y | Y |
CE1 | 114.90°E, 20.44°N | 9 August–12 September | 112 | N | Y | N | ||
CE2 * | 117.12°E, 20.19°N | 26 August–31 October | 47 | N | N | Y | ||
CE4 | 114.27°E, 20.55°N | 23–29 September | 57 | N | N | Y | ||
Rbox | 22.0°N, 114.0°E; 20.6°N, 113.5°E; 18.3°N, 120.0°E; 19.7°N, 120.5°E | ACE1 * | 118.79°E, 21.18°N | 28 May–8 October | 89 | Y | Y | Y |
CE3 * | 120.54°E, 19.90°N | 3–30 September | 29 | N | N | Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Liang, C.; Tian, X.; Hu, J.; Ding, T.; Zhou, B.; Chen, X.; Wang, Y. Identifying Oceanic Responses with Validated Satellite Observations after the Passage of Typhoons in the Northern South China Sea. Remote Sens. 2022, 14, 3872. https://doi.org/10.3390/rs14163872
Jin W, Liang C, Tian X, Hu J, Ding T, Zhou B, Chen X, Wang Y. Identifying Oceanic Responses with Validated Satellite Observations after the Passage of Typhoons in the Northern South China Sea. Remote Sensing. 2022; 14(16):3872. https://doi.org/10.3390/rs14163872
Chicago/Turabian StyleJin, Weifang, Chujin Liang, Xinliang Tian, Junyang Hu, Tao Ding, Beifeng Zhou, Xiaoyan Chen, and Yuntao Wang. 2022. "Identifying Oceanic Responses with Validated Satellite Observations after the Passage of Typhoons in the Northern South China Sea" Remote Sensing 14, no. 16: 3872. https://doi.org/10.3390/rs14163872
APA StyleJin, W., Liang, C., Tian, X., Hu, J., Ding, T., Zhou, B., Chen, X., & Wang, Y. (2022). Identifying Oceanic Responses with Validated Satellite Observations after the Passage of Typhoons in the Northern South China Sea. Remote Sensing, 14(16), 3872. https://doi.org/10.3390/rs14163872