Remote Estimation of the Particulate Phosphorus Concentrations in Inland Water Bodies: A Case Study in Hongze Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Points
2.2. In Situ Data
2.2.1. Water Quality Tests
2.2.2. Spectral Data Collection
2.2.3. Image Acquisition and Preprocessing Steps
2.3. Performance Evaluation
3. Construction of the PP Model
3.1. Relationship between the PP Concentration and Particulate Matter Absorption Coefficient
3.2. Development of a Semianalytical PP Algorithm
3.3. Development of an Empirical PP Algorithm for Use with Broadband Imagery
4. Results and Discussion
4.1. Feasibility Analysis of Estimating the PP Concentration through Remote Sensing Methods
4.2. Advantages and Applicability Analysis of the Constructed Semianalytical Model
4.3. Models Selected for PP Concentration Estimations Based on Different Remotely Sensed Data Sources
4.4. Validation of the Constructed Models Using Image Data of Hongze Lake
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, C.; Wang, Q.; Li, Y.; Lyu, H.; Zhu, L.; Zheng, Z.; Wen, S.; Liu, G.; Guo, Y. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. 2018, 71, 29–42. [Google Scholar] [CrossRef]
- Wang, M.; Wu, X.; Li, D.; Li, X.; Huang, Y. Annual variation of different phosphorus forms and response of algae growth in Meiliang bay of Taihu lake. Huan Jing Ke Xue Huanjing Kexue 2015, 36, 80–86. [Google Scholar] [PubMed]
- Silió-Calzada, A.; Bricaud, A.; Uitz, J.; Gentili, B. Estimation of new primary production in the Benguela upwelling area, using ENVISAT satellite data and a model dependent on the phytoplankton community size structure. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Isenstein, E.; Park, M.-H. AssessmentofnutrientdistributionsinLakeChamplainusingsatelliteremotesensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.F.; Wu, J.P.; Qi, J.G.; Zhang, L.; Huang, H.Q.; Lou, L.P.; Chen, Y.X. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yuan, D.; Song, X. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, C.; Ma, R.; Cao, Z. Remote sensing estimation of lake total phosphorus concentration based on MODIS: A case study of Lake Hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef]
- Sun, D.; Qiu, Z.; Li, Y.; Shi, K.; Gong, S. Detection of Total Phosphorus Concentrations of Turbid Inland Waters Using a Remote Sensing Method. Water Air Soil Pollut. 2014, 225, 1953. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.; Li, S.; Shi, K.; Hall, B. Remote Estimation of Nutrients for a Drinking Water Source Through Adaptive Modeling. Water Resour. Manag. 2014, 28, 2563–2581. [Google Scholar] [CrossRef]
- Chang, N.B.; Xuan, Z.; Yang, Y.J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sens. Environ. 2013, 134, 100–110. [Google Scholar] [CrossRef]
- Zeng, S.; Du, C.; Li, Y.; Lyu, H.; Dong, X.; Lei, S.; Li, J.; Wang, H. Monitoring the particulate phosphorus concentration of inland waters on the Yangtze Plain and understanding its relationship with driving factors based on OLCI data. Sci. Total Environ. 2022, 809, 151992. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhang, Y.; Moreno-Madrinan, M.J.; Li, Y.; Li, N. A semi-analytical model for estimating total suspended matter in highly turbid waters. Opt. Express 2018, 26, 34094–34112. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Guo, Y.; Yang, H.; Li, Y.; Zou, J.; Zhang, M.; Lyu, H.; Zhu, A.; Huang, T. Using remote sensing to track variation in phosphorus and its interaction with chlorophyll-a and suspended sediment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4171–4180. [Google Scholar] [CrossRef]
- Lorenzen, C.J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Chen, W. Discussion on possible error for phytoplankton chlorophyll-α concentration analysis using hot-ethanol extraction method. J. Lake Sci. 2006, 18, 550–552. [Google Scholar]
- Mitchell, B.G. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. In Proceedings of the SPIE, Ocean Optics X, Orlando, IL, USA, 16–20 April 1990; pp. 137–149. [Google Scholar]
- Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M.; Mueller, J. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean. Opt. Protoc. Satell. Ocean. Color Sens. Valid. Revis. 2002, 3, 231. [Google Scholar]
- Morel, A.; Mueller, J.L. Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors. Ocean. Opt. Protoc. Satell. Ocean. Color Sens. Valid. Revis. 2002, 2, 183–210. [Google Scholar]
- Zhang, Y.; Shi, K.; Zhang, Y.; Moreno-Madriñán, M.J.; Zhu, G.; Zhou, Y.; Yao, X. Long-term change of total suspended matter in a deep-valley reservoir with HJ-1A/B: Implications for reservoir management. Environ. Sci. Pollut. Res. 2019, 26, 3041–3054. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China. Remote Sens. 2015, 7, 13975–13999. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Appl. Optics 2005, 44, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Du, C.; Li, Y.; Lyu, H.; Liu, N.; Zheng, Z.; Li, Y. Remote estimation of total phosphorus concentration in the Taihu Lake using a semi-analytical model. Int. J. Remote Sens. 2020, 41, 7993–8013. [Google Scholar] [CrossRef]
Name | Date | Spatial Resolution (m) |
---|---|---|
Sentinel 3 OLCI | 16 January 2022 | 500 |
Landsat 9 OLI-2 | 16 January 2022 | 30 |
Sensor | Model for Estimating PP Concentrations |
---|---|
MODIS | Semianalytical model based on at |
Sentinel 3 OLCI | Semianalytical model based on at |
MERIS | Semianalytical model based on at |
TM | Empirical model |
OLI-1/2 | Empirical model |
HJ1A/B CCD | Empirical model |
Gaofen 1 | Empirical model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Shi, K.; Liu, N.; Li, Y.; Lyu, H.; Yan, C.; Pan, J. Remote Estimation of the Particulate Phosphorus Concentrations in Inland Water Bodies: A Case Study in Hongze Lake. Remote Sens. 2022, 14, 3863. https://doi.org/10.3390/rs14163863
Du C, Shi K, Liu N, Li Y, Lyu H, Yan C, Pan J. Remote Estimation of the Particulate Phosphorus Concentrations in Inland Water Bodies: A Case Study in Hongze Lake. Remote Sensing. 2022; 14(16):3863. https://doi.org/10.3390/rs14163863
Chicago/Turabian StyleDu, Chenggong, Kun Shi, Naisen Liu, Yunmei Li, Heng Lyu, Chen Yan, and Jinheng Pan. 2022. "Remote Estimation of the Particulate Phosphorus Concentrations in Inland Water Bodies: A Case Study in Hongze Lake" Remote Sensing 14, no. 16: 3863. https://doi.org/10.3390/rs14163863
APA StyleDu, C., Shi, K., Liu, N., Li, Y., Lyu, H., Yan, C., & Pan, J. (2022). Remote Estimation of the Particulate Phosphorus Concentrations in Inland Water Bodies: A Case Study in Hongze Lake. Remote Sensing, 14(16), 3863. https://doi.org/10.3390/rs14163863