Evaluation of Gridded Precipitation Data for Hydrologic Modeling in North-Central Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of Gridded Precipitation Datasets
2.2.1. Global Historical Climatology Network
2.2.2. Daymet
2.2.3. Parameter-elevation Regressions on Independent Slopes Model (PRISM)
2.2.4. Integrated Multi-satellitE Retrievals for GPM (IMERG)
2.2.5. Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS)
2.2.6. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)
2.3. Gridded Precipitation Datasets Performance Evaluation
2.4. Hydrologic Modeling
2.4.1. Description of the SWAT Model
2.4.2. SWAT Model Calibration and Validation
3. Results
3.1. Comparison of Gridded Precipitation with In Situ Precipitation
3.1.1. Daily Analysis
3.1.2. Monthly Analysis
3.1.3. Annual and Seasonal Evaluation of Gridded Precipitation Datasets
3.2. Hydrological Model Performance with Gridded Precipitation Datasets
3.3. Uncertainties Due to Precipitation Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Maraun, D.; Rust, H.W.; Osborn, T.J. Synoptic airflow and UK daily precipitation extremes. Extremes 2010, 13, 133–153. [Google Scholar] [CrossRef]
- Jódar, J.; Carpintero, E.; Martos-Rosillo, S.; Ruiz-Constán, A.; Marín-Lechado, C.; Cabrera-Arrabal, J.A.; Navarrete-Mazariegos, E.; González-Ramón, A.; Lambán, L.; Herrera, C.; et al. Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain). Sci. Total Environ. 2018, 625, 285–300. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Raimonet, M.; Oudin, L.; Thieu, V.; Silvestre, M.; Vautard, R.; Rabouille, C.; Le Moigne, P. Evaluation of gridded meteorological datasets for hydrological modeling. J. Hydrometeorol. 2017, 18, 3027–3041. [Google Scholar] [CrossRef]
- Sperna Weiland, F.C.; Vrugt, J.A.; van Beek, R.L.P.H.; Weerts, A.H.; Bierkens, M.F.P. Significant uncertainty in global scale hydrological modeling from precipitation data errors. J. Hydrol. 2015, 529, 1095–1115. [Google Scholar] [CrossRef] [Green Version]
- Strauch, M.; Bernhofer, C.; Koide, S.; Volk, M.; Lorz, C.; Makeschin, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 2012, 414–415, 413–424. [Google Scholar] [CrossRef]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.; Knutson, T. On the verification and comparison of extreme rainfall indices from climate models. J. Clim. 2008, 21, 1605–1621. [Google Scholar] [CrossRef]
- Javanmard, S.; Yatagai, A.; Nodzu, M.I.; Bodaghjamali, J.; Kawamoto, H. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran. Adv. Geosci. 2010, 25, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Geerts, B.; Wang, Y.; Liu, C. Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation. J. Hydrometeorol. 2017, 18, 2541–2558. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Gao, C.; Ruben, G.B.; Wang, G. Assessing the uncertainties of four precipitation products for SWAT modeling in Mekong River Basin. Remote Sens. 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Zhang, J.; Simpson, M.; Arthur, A.; Grams, H.; Wang, Y.; Langston, C. Updates on the radar data quality control in the MRMS quantitative precipitation estimation system. J. Atmos. Ocean Technol. 2020, 37, 1521–1537. [Google Scholar] [CrossRef]
- Behnke, R.; Vavrus, S.; Allstadt, A.; Albright, T.; Thogmartin, W.E.; Radeloff, V.C. Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl. 2016, 26, 1338–1351. [Google Scholar] [CrossRef]
- Daly, C. Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol. 2006, 26, 707–721. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; Van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Karbalaee, N.; Hsu, K.; Sorooshian, S.; Braithwaite, D. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data. J. Geophys. Res. Atmos. 2017, 122, 3859–3876. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; Hsu, K.-L.; Coppola, E.; Tomassetti, B.; Verdecchia, M.; Visconti, G. Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Day 0.1 Degree × 0.1 Degree V06 (GPM_3IMERGDF) at GES DISC. 2019. Available online: http://www.10.5067/GPM/IMERGDF/DAY/06 (accessed on 4 July 2022).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; Kida, S.; Seto, S.; Takahashi, N.; et al. Gsmap passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Toté, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar]
- Mehran, A.; Aghakouchak, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Process. 2014, 28, 2262–2270. [Google Scholar] [CrossRef]
- Fu, G.; Barron, O.; Charles, S.P.; Donn, M.J.; Van Niel, T.G.; Hodgson, G. Uncertainty of Gridded Precipitation at Local and Continent Scales: A Direct Comparison of Rainfall from SILO and AWAP in Australia. Asia Pac. J. Atmos. Sci. 2022, 58, 1–18. [Google Scholar] [CrossRef]
- Setti, S.; Maheswaran, R.; Sridhar, V.; Barik, K.K.; Merz, B.; Agarwal, A. Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling. Atmosphere 2020, 11, 1252. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Najeebullah, K. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Connor, S.; Ceccato, P. Evaluation of Satellite Rainfall Estimates and Gridded Gauge Products over the Upper Blue Nile Region. In Nile River Basin; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 109–127. [Google Scholar]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Wijayarathne, D.B.; Coulibaly, P. Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. J. Hydrol. Reg. Stud. 2020, 27, 100646. [Google Scholar] [CrossRef]
- Srivastava, A.; Deb, P.; Kumari, N. Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem. Water Resour. Manag. 2020, 34, 327–341. [Google Scholar] [CrossRef]
- Ma, Z.; Tan, X.; Yang, Y.; Chen, X.; Kan, G.; Ji, X.; Lu, H.; Long, J.; Cui, Y.; Hong, Y. The first comparisons of IMERG and the downscaled results based on IMERG in hydrological utility over the Ganjiang River basin. Water 2018, 10, 1392. [Google Scholar] [CrossRef] [Green Version]
- Baird, M.S. 2019 Fisheries Management Survey Report. In Performance Report as Required by Federal AID in Sport Fish Restoration Act Texas; Texas Parks & Wildlife: Waco, TX, USA, 2020. [Google Scholar]
- White, J.D.; Prochnow, S.J.; Filstrup, C.T.; Scott, J.T.; Byars, B.W.; Zygo-Flynn, L. A combined watershed-water quality modeling analysis of the Lake Waco reservoir: I. Calibration and confirmation of predicted water quality. Lake Reserv. Manag. 2010, 26, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Mcfarland, A.; Adams, T. Semiannual Water Quality Report for the Bosque River Watershed, Monitoring Period: 1 July 2013–30 June 2020; Texas Institute for Applied Environmental Research: Stephenville, TX, USA, 2021; Volume TR2103. [Google Scholar]
- Shafer, M.; Ojima, D.; Antle, J.M.; Kluck, D.; McPherson, R.A.; Petersen, S.; Scanlon, B.; Sherman, K. Chapter 19: Great Plains. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 441–461. [Google Scholar]
- Tuppad, P.; Kannan, N.; Srinivasan, R.; Rossi, C.G.; Arnold, J.G. Simulation of Agricultural Management Alternatives for Watershed Protection. Water Resour. Manag. 2010, 24, 3115–3144. [Google Scholar] [CrossRef]
- Saleh, A.; Gallego, O. Application of SWAT and APEX using the SWAPP (SWAT-APEX) program for the upper North Bosque River watershed in Texas. Trans. ASABE 2007, 50, 1177–1187. [Google Scholar] [CrossRef]
- USDA NRCS. Ecosystems Restoration Project; Bosque River Watershed. Bosque, Coryell, Hamilton, McLennan, Somervell and Erath Counties; USDA NRCS: Temple, TX, USA, 2008.
- Nielsen-Gammon, J.W.; Zhang, F.; Odins, A.M.; Myoung, B. Extreme rainfall in Texas: Patterns and predictability. Phys. Geogr. 2005, 26, 340–364. [Google Scholar] [CrossRef] [Green Version]
- Mcfarland, A.; Adams, T. Semiannual Water Quality Report for the Bosque River Watershed, Monitoring Period: 1 July 2011–30 June 2018; Texas Institute for Applied Environmental Research: Stephenville, TX, USA, 2019; Volume TR1902. [Google Scholar]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3; ORNL DAAC: Oak Ridge, TN, USA, 2017. [CrossRef]
- PRISM Climate Group Oregon State University. PRISM Climate Data. 2004. Available online: http://prism.oregonstate.edu. (accessed on 4 July 2022).
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Diurnal Cycle of IMERG V06 Precipitation. Geophys. Res. Lett. 2019, 46, 13584–13592. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Ombadi, M.; Gorooh, V.A.; Hsu, K.; Sorooshian, S.; Logan, W.S.; Ralph, M. PERSIANN dynamic infrared-rain rate model (PDIR) for high-resolution, real-time satellite precipitation estimation. Bull. Am. Meteorol. Soc. 2020, 101, E286–E302. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Jaffres, J.B.D. GHCN-Daily—A treasure trove of climate data awaiting discovery. Comput. Geosci. 2019, 122, 35–44. [Google Scholar] [CrossRef]
- Huffman Bolvin, D.T.; Nelkin, E.J.; Tan, J. Integrated Multi-SatellitE Retrievals for GPM (IMERG) Technical Documentation. 2019. Available online: https://gpm.nasa.gov/sites/default/files/document_files/IMERG_doc_190909.pdf. (accessed on 4 July 2022).
- Rivera, J.A.; Hinrichs, S.; Marianetti, G. Using CHIRPS Dataset to Assess Wet and Dry Conditions along the Semiarid Central-Western Argentina. Adv. Meteorol. 2019, 2019, 8413964. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.K.; Qamer, F.M.; Pedreros, D.; Murthy, M.S.R.; Mandira, W.; Shrestha, M. Evaluating the accuracy of Climate Hazard Group (CHG) satellite rainfall estimates for precipitation based drought monitoring in Koshi basin, Nepal. J. Hydrol. Reg. Stud. 2017, 13, 138–151. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K.; et al. The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Am. Soc. Agric. Biol. Eng. 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pang, S.; Melching, C.S.; Feger, K.H. Development and testing of a modified SWAT model based on slope condition and precipitation intensity. J. Hydrol. 2020, 588, 125098. [Google Scholar] [CrossRef]
- Touseef, M.; Chen, L.; Yang, W. Assessment of surfacewater availability under climate change using coupled SWAT-WEAP in hongshui river basin, China. ISPRS Int. J. Geo Inf. 2021, 10, 298. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP SWAT Calibration and Uncertainty Programs—A User Manual; SWAT-CUP Calibration: Ho Chi Minh, Vietnam, 2015. [Google Scholar]
- Abbaspour, K.C.; Johnson, C.A. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 1352, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Meng, J.; Li, L.; Hao, Z.; Wang, J.; Shao, Q. Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. J. Hydrol. 2014, 509, 320–332. [Google Scholar] [CrossRef]
- Aghakouchak, A.; Behrangi, A.; Sorooshian, S.; Hsu, K.; Amitai, E. Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res. Atmos. 2011, 116, 1–11. [Google Scholar] [CrossRef]
- Meresa, H.; Tischbein, B.; Mendela, J.; Demoz, R.; Abreha, T.; Weldemichael, M.; Ogbu, K. The role of input and hydrological parameters uncertainties in extreme hydrological simulations. Nat. Resour. Model. 2021, 35, e12320. [Google Scholar] [CrossRef]
- McMillan, H.; Jackson, B.; Clark, M.; Kavetski, D.; Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol. 2011, 400, 83–94. [Google Scholar] [CrossRef]
- Zhang, J.L.; Li, Y.P.; Huang, G.H.; Wang, C.X.; Cheng, G.H. Evaluation of uncertainties in input data and parameters of a hydrological model using a bayesian framework: A case study of a snowmelt-precipitation-driven watershed. J. Hydrometeorol. 2016, 17, 2333–2350. [Google Scholar] [CrossRef]
- Chintalapudi, S.; Sharif, H.O.; Xie, H. Sensitivity of distributed hydrologic simulations to ground and satellite based rainfall products. Water 2014, 6, 1221–1245. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.I.; Banner, J.L.; Musgrove, M. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record. Quat. Sci. Rev. 2015, 127, 155–173. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Wilson, B.N.; Douglas-Mankin, K.R.; Arnold, J.G.; Gowda, P.H. Hydrologic and Water Quality Models: Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1241–1247. [Google Scholar] [CrossRef]
- Santhi, C.; Kannan, N.; Arnold, J.G.; Luzio, M.d. Spatial calibration and temporal validation of flow for regional scale hydrologic modeling. J. Am. Water Resour. Assoc. 2009, 44, 829–846. [Google Scholar] [CrossRef]
Dataset | Data Category | Spatial Resolution | Period | Reference |
---|---|---|---|---|
NCDC | Gauge observations | - | 1 January 2000 to 31 December 2019 | [46] |
Daymet Version 3 | Gauge-based | 1 km | 1 January 2000 to 31 December 2019 | [47] |
PRISM | Gauge-based | 4 km | 1 January 2000 to 31 December 2019 | [48] |
IMERG-Late V06 | Satellite-based | 0.1° | 1 January 2001 to 31 December 2019 | [49] |
IMERG-Early V06 | Satellite-based | 0.1° | 1 January 2001 to 31 December 2019 | [49] |
PERSIANN | Satellite-based | 0.25° | 3 January 2000 to 31 December 2019 | [50] |
PERSIANN-CCS | Satellite-based | 0.04° | 1 January 2003 to 31 December 2019 | [50] |
IMERG-Final V06 | Satellite-based gauge-corrected | 0.1° | 1 January 2001 to 31 December 2019 | [21] |
CHIRPS version 2.0 | Satellite-based gauge-corrected | 0.05° | 1 January 2000 to 31 December 2019 | [51] |
PERSIANN-CDR | Satellite-based gauge-corrected | 0.25° | 1 January 2000 to 31 December 2019 | [52] |
Parameter | Minimum Value | Maximum Value | Parameter Description |
---|---|---|---|
r_CN2 | −0.2 | 0.2 | Curve number |
v_ALPHA_BF | 0 | 1 | Base flow alpha factor (days) |
a_GWQMN | −1000 | 1000 | Threshold depth of water in shallow aquifer for return flow (mm) |
v_ESCO | 0.4 | 0.95 | Soil evaporation compensation factor |
r_SOL_K | −0.3 | 0.3 | Soil saturated hydraulic conductivity (mm/h) |
r_SOL_AWC | −0.25 | 0.25 | Soil available water capacity |
v_GW_REVAP | 0.02 | 0.2 | Groundwater “revap” coefficient |
v_REVAPMN | 0 | 500 | Threshold depth of water in shallow aquifer for “revap” (mm) |
v_SURLAG | 0.05 | 24 | Surface runoff lag time (days) |
v_CH_K1 | 0 | 300 | Effective hydraulic conductivity in the tributary channel (mm/h) |
v_RES_RR | −3 | 3 | Average daily principal spillway release rate (cusec) |
Basin | Dataset | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
p-Factor | r-Factor | No. of Simulations with NSE > 0.5 | p-Factor | r-Factor | No. of Simulations with NSE > 0.5 | ||
North Bosque | PRISM | 0.98 (0.85) | 1.8 (0.92) | 615 | 0.96 (0.96) | 1.16 (0.84) | 983 |
Daymet | 0.98 (0.84) | 1.92 (0.92) | 813 | 0.96 (0.88) | 1.29 (0.83) | 1081 | |
IMERG-Final | 0.97 (0.87) | 1.85 (0.88) | 806 | 0.94 (0.88) | 0.88 (0.7) | 477 | |
IMERG-Late | 0.84 (0.57) | 2.72 (0.49) | 37 | 0.71 (n/a) | 1.86 (n/a) | 0 | |
IMERG-Early | 0.82 (0.44) | 2.68 (0.39) | 13 | 0.79 (0.58) | 1.78 (0.5) | 115 | |
PERSIANN-CHRS | 0.66 (n/a) | 2.34 (n/a) | 0 | 0.81 (n/a) | 1.46 (n/a) | 0 | |
PERSIANN-CCS | 0.74 (n/a) | 1.52 (n/a) | 0 | 0.88 (0.15) | 1.11 (0.1) | 3 | |
PERSIANN-CDR | 0.92 (0.69) | 1.42 (0.71) | 120 | 0.89 (0.86) | 0.76 (0.76) | 338 | |
CHIRPS | 0.93 (0.83) | 1.49 (0.85) | 296 | 0.92 (0.81) | 0.88 (0.76) | 351 | |
NCDC | 0.99 (0.81) | 1.81 (0.84) | 707 | 0.9 (0.74) | 1.06 (0.59) | 254 | |
Hog Creek | PRISM | 0.75 (n/a) | 2.1 (n/a) | 0 | 0.9 (0.87) | 1.71 (1.04) | 380 |
Daymet | 0.76 (0.73) | 2.54 (0.62) | 112 | 0.9 (0.85) | 2.15 (0.97) | 729 | |
IMERG-Final | 0.75 (n/a) | 2.24 (n/a) | 0 | 0.87 (n/a) | 1.47 (n/a) | 0 | |
IMERG-Late | 0.66 (0.64) | 2.99 (0.59) | 42 | 0.8 (0.68) | 2.62 (0.9) | 134 | |
IMERG-Early | 0.65 (0.66) | 2.82 (0.62) | 217 | 0.78 (0.67) | 2.6 (0.93) | 133 | |
PERSIANN-CHRS | 0.65 (n/a) | 2.1 (n/a) | 0 | 0.73 (n/a) | 2.22 (n/a) | 0 | |
PERSIANN-CCS | 0.66 (n/a) | 1.76 (n/a) | 0 | 0.85 (n/a) | 1.65 (n/a) | 0 | |
PERSIANN-CDR | 0.75 (n/a) | 1.65 (n/a) | 0 | 0.85 (0.45) | 1.37 (0.51) | 19 | |
CHIRPS | 0.77 (n/a) | 1.92 (n/a) | 0 | 0.88 (0.65) | 1.44 (0.86) | 231 | |
NCDC | 0.73 (n/a) | 2.24 (n/a) | 0 | 0.9 (0.72) | 1.53 (0.84) | 111 | |
Middle Bosque | PRISM | 0.86 (0.69) | 1.98 (0.62) | 181 | 0.83 (0.85) | 1.97 (0.93) | 880 |
Daymet | 0.81 (0.69) | 2.42 (0.58) | 161 | 0.83 (0.71) | 2.35 (0.84) | 1163 | |
IMERG-Final | 0.8 (0.55) | 2.05 (0.4) | 51 | 0.83 (0.6) | 1.67 (0.8) | 304 | |
IMERG-Late | 0.7 (0.41) | 2.67 (0.38) | 39 | 0.6 (0.31) | 2.83 (0.19) | 23 | |
IMERG-Early | 0.73 (0.22) | 2.59 (0.2) | 3 | 0.6 (0.31) | 2.79 (0.32) | 138 | |
PERSIANN-CHRS | 0.6 (n/a) | 1.83 (n/a) | 0 | 0.6 (n/a) | 2.42 (n/a) | 0 | |
PERSIANN-CCS | 0.58 (n/a) | 1.71 (n/a) | 0 | 0.67 (n/a) | 2.06 (n/a) | 0 | |
PERSIANN-CDR | 0.77 (0.05) | 1.64 (0) | 1 | 0.77 (0.04) | 1.68 (0) | 1 | |
CHIRPS | 0.82 (0.55) | 1.85 (0.35) | 23 | 0.79 (0.69) | 1.83 (0.81) | 461 | |
NCDC | 0.82 (0.62) | 2.11 (0.54) | 77 | 0.81 (0.67) | 2 (0.72) | 357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, R.L.; Sishodia, R.P.; Tefera, G.W. Evaluation of Gridded Precipitation Data for Hydrologic Modeling in North-Central Texas. Remote Sens. 2022, 14, 3860. https://doi.org/10.3390/rs14163860
Ray RL, Sishodia RP, Tefera GW. Evaluation of Gridded Precipitation Data for Hydrologic Modeling in North-Central Texas. Remote Sensing. 2022; 14(16):3860. https://doi.org/10.3390/rs14163860
Chicago/Turabian StyleRay, Ram L., Rajendra P. Sishodia, and Gebrekidan W. Tefera. 2022. "Evaluation of Gridded Precipitation Data for Hydrologic Modeling in North-Central Texas" Remote Sensing 14, no. 16: 3860. https://doi.org/10.3390/rs14163860
APA StyleRay, R. L., Sishodia, R. P., & Tefera, G. W. (2022). Evaluation of Gridded Precipitation Data for Hydrologic Modeling in North-Central Texas. Remote Sensing, 14(16), 3860. https://doi.org/10.3390/rs14163860