Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites Description
2.2. In Situ Data
2.3. Landsat 8 TOA Data
2.4. Landsat Level-2 Surface Temperature Science Product
2.5. Simple Linear Model
- —is the response variable;
- —are regression coefficients calculated for individual explanatory variables;
- —are the values of the explanatory variables;
- —is the intercept.
2.6. Random Forest Model
2.7. Land Surface Temperature Model
2.8. Model Validation Procedure
2.9. Model Application
3. Results
3.1. Comparison of Methods
3.2. LST-L2 Calibration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ptak, M.; Sojka, M.; Graf, R.; Choiński, A.; Zhu, S.; Nowak, B. Warming Vistula River—The Effects of Climate and Local Conditions on Water Temperature in One of the Largest Rivers in Europe. J. Hydrol. Hydromech. 2022, 70, 1–11. [Google Scholar] [CrossRef]
- Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P.; Dekker, A.G. Measuring Freshwater Aquatic Ecosystems: The Need for a Hyperspectral Global Mapping Satellite Mission. Remote Sens. Environ. 2015, 167, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- van Puijenbroek, P.J.T.M.; Evers, C.H.M.; van Gaalen, F.W. Evaluation of Water Framework Directive Metrics to Analyse Trends in Water Quality in the Netherlands. Sustain. Water Qual. Ecol. 2015, 6, 40–47. [Google Scholar] [CrossRef]
- Birk, S.; Ecke, F. The Potential of Remote Sensing in Ecological Status Assessment of Coloured Lakes Using Aquatic Plants. Ecol. Indic. 2014, 46, 398–406. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F. The Relationship between Air and Water Temperatures in Lakes of the Swiss Plateau: A Case Study with Palaeolimnological Implications. J. Paleolimnol. 1998, 19, 181–198. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space Observations of Inland Water Bodies Show Rapid Surface Warming since 1985. Geophys. Res. Lett. 2010, 37, L22405. [Google Scholar] [CrossRef] [Green Version]
- Austin, J.; Colman, S. A Century of Temperature Variability in Lake Superior. Limnol. Oceanogr. 2008, 53, 2724–2730. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. MODIS-Derived Surface Temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- George, G.D. Using Airborne Remote Sensing to Study the Physical Dynamics of Lakes and the Spatial Distribution of Phytoplankton. Freshw. Rev. 2012, 5, 121–140. [Google Scholar] [CrossRef]
- Schluessel, P.; Emery, W.J.; Grassl, H.; Mammen, T. On the Bulk-Skin Temperature Difference and Its Impact on Satellite Remote Sensing of Sea Surface Temperature. J. Geophys. Res. 1990, 95, 13341. [Google Scholar] [CrossRef]
- Wick, G.A.; Emery, W.J.; Kantha, L.H.; Schlüssel, P. The Behavior of the Bulk—Skin Sea Surface Temperature Difference under Varying Wind Speed and Heat Flux. J. Phys. Oceanogr. 1996, 26, 1969–1988. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Politi, E.; Cutler, M.E.J.; Rowan, J.S. Using the NOAA Advanced Very High Resolution Radiometer to Characterise Temporal and Spatial Trends in Water Temperature of Large European Lakes. Remote Sens. Environ. 2012, 126, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tavares, M.; Cunha, A.; Motta-Marques, D.; Ruhoff, A.; Cavalcanti, J.; Fragoso, C.; Martín Bravo, J.; Munar, A.; Fan, F.; Rodrigues, L. Comparison of Methods to Estimate Lake-Surface-Water Temperature Using Landsat 7 ETM+ and MODIS Imagery: Case Study of a Large Shallow Subtropical Lake in Southern Brazil. Water 2019, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Popa, A.-M.; Șandric, I.; Iojă, I.-C. Exploratory Analysis of Cooling Effect of Urban Lakes on Land Surface Temperature in Bucharest (Romania) Using Landsat Imagery. Urban Clim. 2020, 34, 100696. [Google Scholar] [CrossRef]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting Chlorophyll, Secchi Disk Depth and Surface Temperature in a Sub-Alpine Lake Using Landsat Imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Prats, J.; Reynaud, N.; Rebière, D.; Peroux, T.; Tormos, T.; Danis, P.-A. LakeSST: Lake Skin Surface Temperature in French Inland Water Bodies for 1999–2016 from Landsat Archives. Earth Syst. Sci. Data 2018, 10, 727–743. [Google Scholar] [CrossRef] [Green Version]
- Simon, R.N.; Tormos, T.; Danis, P.-A. Retrieving Water Surface Temperature from Archive LANDSAT Thermal Infrared Data: Application of the Mono-Channel Atmospheric Correction Algorithm over Two Freshwater Reservoirs. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 247–250. [Google Scholar] [CrossRef]
- Becker, M.; Daw, A. Influence of Lake Morphology and Clarity on Water Surface Temperature as Measured by EOS ASTER. Remote Sens. Environ. 2005, 99, 288–294. [Google Scholar] [CrossRef]
- Kay, J.E.; Kampf, S.K.; Handcock, R.N.; Cherkauer, K.A.; Gillespie, A.R.; Burges, S.J. Accuracy of Lake and Stream Temperatures Estimated from Thermal Infrared Images. J. Am. Water Resour. Assoc. 2005, 41, 1161–1175. [Google Scholar] [CrossRef]
- Sabol, D.E., Jr.; Gillespie, A.R.; Abbott, E.; Yamada, G. Field Validation of the ASTER Temperature–Emissivity Separation Algorithm. Remote Sens. Environ. 2009, 113, 2328–2344. [Google Scholar] [CrossRef]
- Sharma, S.; Walker, S.C.; Jackson, D.A. Empirical Modelling of Lake Water-Temperature Relationships: A Comparison of Approaches. Freshw. Biol. 2008, 53, 897–911. [Google Scholar] [CrossRef]
- Edinger, J.E.; Duttweiler, D.W.; Geyer, J.C. The Response of Water Temperatures to Meteorological Conditions. Water Resour. Res. 1968, 4, 1137–1143. [Google Scholar] [CrossRef]
- Oswald, C.J.; Rouse, W.R. Thermal Characteristics and Energy Balance of Various-Size Canadian Shield Lakes in the Mackenzie River Basin. J. Hydrometeorol. 2004, 5, 129–144. [Google Scholar] [CrossRef]
- Snucins, E.; John, G. Interannual Variation in the Thermal Structure of Clear and Colored Lakes. Limnol. Oceanogr. 2000, 45, 1639–1646. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Strzelczak, A. Changeability of Accumulated Heat Content in Alpine-Type Lakes. Pol. J. Environ. Stud. 2015, 24, 2363–2369. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Kozłowski, M. The Increasing of Maximum Lake Water Temperature in Lowland Lakes of Central Europe: Case Study of the Polish Lakeland. Ann. Limnol. Int. J. Limnol. 2019, 55, 6. [Google Scholar] [CrossRef]
- Heddam, S.; Ptak, M.; Zhu, S. Modelling of Daily Lake Surface Water Temperature from Air Temperature: Extremely Randomized Trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. J. Hydrol. 2020, 588, 125130. [Google Scholar] [CrossRef]
- De Santis, D.; Del Frate, F.; Schiavon, G. Analysis of Climate Change Effects on Surface Temperature in Central-Italy Lakes Using Satellite Data Time-Series. Remote Sens. 2021, 14, 117. [Google Scholar] [CrossRef]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of Spatial and Temporal Variation of Water Characteristics through Satellite Remote Sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- Irani Rahaghi, A.; Lemmin, U.; Barry, D.A. Surface Water Temperature Heterogeneity at Subpixel Satellite Scales and Its Effect on the Surface Cooling Estimates of a Large Lake: Airborne Remote Sensing Results From Lake Geneva. J. Geophys. Res. Ocean. 2019, 124, 635–651. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Yang, K.; Luo, Y.; Wang, P.; Yang, Z. Research on the Lake Surface Water Temperature Downscaling Based on Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5550–5558. [Google Scholar] [CrossRef]
- Ptak, M.; Choiński, A.; Piekarczyk, J.; Pryłowski, T. Applying Landsat Satellite Thermal Images in the Analysis of Polish Lake Temperatures. Pol. J. Environ. Stud. 2017, 26, 2159–2165. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Czernecki, B.; Ptak, M. The Impact of Global Warming on Lake Surface Water Temperature in Poland—The Application of Empirical-Statistical Downscaling, 1971–2100. J. Limnol. 2018, 77, 330–348. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Zhu, S.; Ptak, M.; Sojka, M.; Du, X. Warming of Lowland Polish Lakes under Future Climate Change Scenarios and Consequences for Ice Cover and Mixing Dynamics. J. Hydrol. Reg. Stud. 2021, 34, 100780. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Characteristics of Daily Water Temperature Fluctuations in Lake Kierskie (West Poland). Quaest. Geogr. 2019, 38, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Ptak, M.; Nowak, B. Variability of Oxygen-Thermal Conditions in Selected Lakes in Poland. Ecol. Chem. Eng. 2016, 23, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- USGS Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide; United States Geological Survey: Asheville, NC, USA, 2022; pp. 1–42.
- Cook, M. Atmospheric Compensation for a Landsat Land Surface Temperature Product; Rochester Institute of Technology: Rochester, NY, USA, 2014. [Google Scholar]
- Cook, M.; Schott, J.; Mandel, J.; Raqueno, N. Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, B.A.; Iiames, J.; Dwyer, J.; Urquhart, E.; Salls, W.; Rover, J.; Seegers, B. An Initial Validation of Landsat 5 and 7 Derived Surface Water Temperature for U.S. Lakes, Reservoirs, and Estuaries. Int. J. Remote Sens. 2018, 39, 7789–7805. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, N.; Jain, P.; Choudhury, A.; Dutta, P.; Kalita, K.; Barsocchi, P. Random Forest Regression-Based Machine Learning Model for Accurate Estimation of Fluid Flow in Curved Pipes. Processes 2021, 9, 2095. [Google Scholar] [CrossRef]
- Seo, D.; Kim, Y.; Eo, Y.; Park, W.; Park, H. Generation of Radiometric, Phenological Normalized Image Based on Random Forest Regression for Change Detection. Remote Sens. 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Duguay-Tetzlaff, A.; Bento, V.; Göttsche, F.; Stöckli, R.; Martins, J.; Trigo, I.; Olesen, F.; Bojanowski, J.; da Camara, C.; Kunz, H. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. Terra: Spatial Data Analysis, USA, 2022.
- Skowron, R. Zróżnicowanie i Zmienność Wybranych Elementów Reżimu Termicznego Wody w Jeziorach Na Niżu Polskim; Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2011; ISBN 978-83-231-2695-9. [Google Scholar]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef] [Green Version]
- Hashim, N.S.; Windupranata, W.; Sulaiman, S.A.H. Shallow-Water Bathymetry Estimation Using Single Band Algorithm and Green Band Algorithm. In Proceedings of the 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 8 August 2020; pp. 214–219. [Google Scholar]
- Jia, X.; Willard, J.; Karpatne, A.; Read, J.S.; Zwart, J.A.; Steinbach, M.; Kumar, V. Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles. ACMIMS Trans. Data Sci. 2021, 2, 1–26. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H.; Robertson, D.M.; Lathrop, R.C.; Hamilton, D.P. Trends and Abrupt Changes in 104 Years of Ice Cover and Water Temperature in a Dimictic Lake in Response to Air Temperature, Wind Speed, and Water Clarity Drivers. Hydrol. Earth Syst. Sci. 2016, 20, 1681–1702. [Google Scholar] [CrossRef] [Green Version]
- Binding, C.E.; Zastepa, A.; Zeng, C. The Impact of Phytoplankton Community Composition on Optical Properties and Satellite Observations of the 2017 Western Lake Erie Algal Bloom. J. Gt. Lakes Res. 2019, 45, 573–586. [Google Scholar] [CrossRef]
- Damtew, Y.T.; Verbeiren, B.; Awoke, A.; Triest, L. Satellite Imageries and Field Data of Macrophytes Reveal a Regime Shift of a Tropical Lake (Lake Ziway, Ethiopia). Water 2021, 13, 396. [Google Scholar] [CrossRef]
- Qing, S.; Runa, A.; Shun, B.; Zhao, W.; Bao, Y.; Hao, Y. Distinguishing and Mapping of Aquatic Vegetations and Yellow Algae Bloom with Landsat Satellite Data in a Complex Shallow Lake, China during 1986–2018. Ecol. Indic. 2020, 112, 106073. [Google Scholar] [CrossRef]
- Hao, X.; Yang, Q.; Shi, X.; Liu, X.; Huang, W.; Chen, L.; Ma, Y. Fractal-Based Retrieval and Potential Driving Factors of Lake Ice Fractures of Chagan Lake, Northeast China Using Landsat Remote Sensing Images. Remote Sens. 2021, 13, 4233. [Google Scholar] [CrossRef]
- Khanesar, M.A.; Branson, D.T. Prediction Interval Identification Using Interval Type-2 Fuzzy Logic Systems: Lake Water Level Prediction Using Remote Sensing Data. IEEE Sens. J. 2021, 21, 13815–13827. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Lan, M.; Xu, M.; Yang, B.; Huang, Y. Evaluation of Historic and Operational Satellite Radar Altimetry Missions for Constructing Consistent Long-Term Lake Water Level Records. Hydrol. Earth Syst. Sci. 2021, 25, 1643–1670. [Google Scholar] [CrossRef]
- Aguilar-Lome, J.; Soca-Flores, R.; Gómez, D. Evaluation of the Lake Titicaca’s Surface Water Temperature Using LST MODIS Time Series (2000–2020). J. S. Am. Earth Sci. 2021, 112, 103609. [Google Scholar] [CrossRef]
- Du, J.; Jacinthe, P.; Zhou, H.; Xiang, X.; Zhao, B.; Wang, M.; Song, K. Monitoring of Water Surface Temperature of Eurasian Large Lakes Using MODIS Land Surface Temperature Product. Hydrol. Process. 2020, 34, 3582–3595. [Google Scholar] [CrossRef]
- Kishcha, P.; Starobinets, B.; Lechinsky, Y.; Alpert, P. Absence of Surface Water Temperature Trends in Lake Kinneret despite Present Atmospheric Warming: Comparisons with Dead Sea Trends. Remote Sens. 2021, 13, 3461. [Google Scholar] [CrossRef]
- Moukomla, S.; Blanken, P. Remote Sensing of the North American Laurentian Great Lakes’ Surface Temperature. Remote Sens. 2016, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C.; et al. A Comprehensive Data Set of Lake Surface Water Temperature over the Tibetan Plateau Derived from MODIS LST Products 2001–2015. Sci. Data 2017, 4, 170095. [Google Scholar] [CrossRef] [Green Version]
- Szkwarek, K.; Wochna, A. Wyznaczanie temperatury powierzchniowej jeziora Raduńskiego Górnego na podstawie zdjęć satelitarnych Landsat 8. Tutor. Gedanensis 2020, 5, 41–45. [Google Scholar]
- Sharaf, N.; Fadel, A.; Bresciani, M.; Giardino, C.; Lemaire, B.J.; Slim, K.; Faour, G.; Vinçon-Leite, B. Lake Surface Temperature Retrieval from Landsat-8 and Retrospective Analysis in Karaoun Reservoir, Lebanon. J. Appl. Remote Sens. 2019, 13, 044505. [Google Scholar] [CrossRef]
- Martinsen, K.T.; Andersen, M.R.; Sand-Jensen, K. Water Temperature Dynamics and the Prevalence of Daytime Stratification in Small Temperate Shallow Lakes. Hydrobiologia 2019, 826, 247–262. [Google Scholar] [CrossRef]
- Tokuda, D.; Kim, H.; Yamazaki, D.; Oki, T. Development of a Global River Water Temperature Model Considering Fluvial Dynamics and Seasonal Freeze-Thaw Cycle. Water Resour. Res. 2019, 55, 1366–1383. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Hinkel, K.; Yu, B.; Beck, R.; Wu, J. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data. Water Resour. Res. 2017, 53, 9642–9658. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Brychczyński, A. Zróżnicowanie reżimu odpływu rzek w północno-zachodniej Polsce. Bad. Fizjogr. 2014, 65, 261–274. [Google Scholar]
- Cao, B.; Kang, L.; Yang, S. Retrieval of Lake Water Temperature Based on LandSat TM Imagery: A Case Study in East Lake of Wuhan; Tian, J., Ma, J., Eds.; SPIE: Bellingham, WA, USA, 2013; p. 892108. [Google Scholar]
- Luciani, G.; Bresciani, M.; Biraghi, C.A.; Ghirardi, N.; Carrion, D.; Rogora, M.; Brovelli, M.A. Satellite Monitoring System of Subalpine Lakes with Open Source Software: The Case of SIMILE Project. Balt. J. Mod. Comput. 2021, 9, 135–144. [Google Scholar] [CrossRef]
- Sener, S.; Sener, E. Estimation of Lake Water Temperature with ASTER and Landsat 8 OLI-TIRS Thermal Infrared Bands: A Case Study Beysehir Lake (Turkey). Living Planet Symp. 2016, 740, 256. [Google Scholar]
- Aïtelghazi, A.; Rhinane, H.; Bensalmia, A.; Giuliani, G. Using the Landsat-7 Data to Study the Correlation between the Surface Temperature and Phytoplankton Turbidity Case Study: Al Massira Lake (Settat-Morocco). Mater. Today Proc. 2019, 13, 496–504. [Google Scholar] [CrossRef]
- Chao Rodríguez, Y.; el Anjoumi, A.; Domínguez Gómez, J.A.; Rodríguez Pérez, D.; Rico, E. Using Landsat Image Time Series to Study a Small Water Body in Northern Spain. Environ. Monit. Assess. 2014, 186, 3511–3522. [Google Scholar] [CrossRef]
- Choiński, A. Katalog jezior Polski; Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza: Poznań, Poland, 2006. [Google Scholar]
Method | MBE [°C] | RMSE [°C] | COR | SD [°C] |
---|---|---|---|---|
LM | −0.01 | 2.29 | 0.91 | 4.98 |
RF | −0.06 | 1.83 | 0.94 | 4.92 |
LST | 2.04 | 3.35 | 0.88 | 5.52 |
LST-L2 | 2.55 | 3.68 | 0.9 | 5.94 |
B10 TOA | −2.11 | 2.70 | 0.88 | 4.83 |
Month | RMSE | Correlation | ||||||
---|---|---|---|---|---|---|---|---|
LM [°C] | RF [°C] | LST [°C] | LST-L2 [°C] | LM | RF | LST | LST-L2 | |
April | 2.91 | 1.84 | 4.39 | 4.28 | 0.71 | 0.75 | 0.7 | 0.69 |
May | 2.97 | 2.43 | 4.42 | 4.87 | 0.69 | 0.66 | 0.68 | 0.67 |
June | 1.81 | 1.48 | 2.84 | 3.39 | 0.76 | 0.82 | 0.74 | 0.76 |
July | 1.8 | 1.46 | 2.68 | 3.59 | 0.68 | 0.71 | 0.66 | 0.71 |
August | 2 | 1.87 | 3.13 | 3.42 | 0.72 | 0.67 | 0.63 | 0.69 |
September | 1.93 | 1.45 | 2.2 | 2.4 | 0.81 | 0.8 | 0.75 | 0.77 |
October | 1.75 | 1.58 | 1.8 | 1.62 | 0.88 | 0.79 | 0.8 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyba, K.; Ermida, S.; Ptak, M.; Piekarczyk, J.; Sojka, M. Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sens. 2022, 14, 3839. https://doi.org/10.3390/rs14153839
Dyba K, Ermida S, Ptak M, Piekarczyk J, Sojka M. Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sensing. 2022; 14(15):3839. https://doi.org/10.3390/rs14153839
Chicago/Turabian StyleDyba, Krzysztof, Sofia Ermida, Mariusz Ptak, Jan Piekarczyk, and Mariusz Sojka. 2022. "Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8" Remote Sensing 14, no. 15: 3839. https://doi.org/10.3390/rs14153839
APA StyleDyba, K., Ermida, S., Ptak, M., Piekarczyk, J., & Sojka, M. (2022). Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sensing, 14(15), 3839. https://doi.org/10.3390/rs14153839