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Abstract: The European Organization for the Exploitation of Meteorological Satellites’ 

(EUMETSAT) Meteosat satellites provide the unique opportunity to compile a 30+ year land 

surface temperature (LST) climate data record. Since the Meteosat instrument on-board 

Meteosat 2–7 is equipped with a single thermal channel, single-channel LST retrieval 

algorithms are used to ensure consistency across Meteosat satellites. The present study 

compares the performance of two single-channel LST retrieval algorithms: (1) A physical 

radiative transfer-based mono-window (PMW); and (2) a statistical mono-window model 

(SMW). The performance of the single-channel algorithms is assessed using a database of 

synthetic radiances for a wide range of atmospheric profiles and surface variables. The two 

single-channel algorithms are evaluated against the commonly-used generalized split-window 
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(GSW) model. The three algorithms are verified against more than 60,000 LST ground 

observations with dry to very moist atmospheres (total column water vapor (TCWV) 1–56 mm). 

Except for very moist atmospheres (TCWV > 45 mm), results show that Meteosat single-channel 

retrievals match those of the GSW algorithm by 0.1–0.5 K. This study also outlines that it is 

possible to put realistic uncertainties on Meteosat single-channel LSTs, except for very moist 

atmospheres: simulated theoretical uncertainties are within 0.3–1.0 K of the in situ root mean 

square differences for TCWV < 45 mm. 

Keywords: thermal infrared; LST; Meteosat; single channel; climate data record;  

radiative transfer  

 

1. Introduction 

Land surface temperature (LST) is an important climate state variable. Precise estimates of the radiative 

surface skin temperature are essential to compute the surface radiative and sensible heat balance [1]. 

Moreover, LST is a key variable for a wide range of applications related to land surface processes, such 

as drought [2] and evaporation monitoring [3]. Satellite-based LSTs are important for the evaluation of 

surface-emitting temperatures in climate models at various time scales [1]. Ideally, they can also be 

assimilated into land surface models [4–6] to improve numerical weather and climate model predictions. 

This wide range of applications makes a long-term homogeneous LST climate data record (CDR) 

highly desirable [7]. Large-scale LST can only be measured by satellite instruments [8] and is best 

represented by measurements of geostationary satellite sensors, as it is subject to strong diurnal  

variation [9,10]. Geostationary LST climate data records (CDRs) are available from the International 

Satellite Cloud Climatology Project (ISCCP) [11] and the Pathfinder Atmospheres-Extended dataset 

(PATMOS-x) [8]. The global ISCCP LST CDR has several limitations, as the primary goal of the ISCCP 

analysis was the retrieval of cloud properties and not LST. The strongest limitation is the very coarse 30 km 

spatial resolution and, to a lesser extent, the 3-h temporal resolution [11]. Moreover, the original ISCCP 

retrieval assumes that all surfaces behave like a black body with unit emissivity, which can lead to 

significant LST retrieval errors, particularly in dry regions (e.g. [12]). The PATMOS-x geostationary 

LST CDR is only available for the Geostationary Operational Environmental Satellite (GOES) field of 

view (North and South America). 

Starting in 1983, the European’s Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) Meteosat First (MFG) and Second Generation (MSG) satellites have provided the unique 

opportunity to compile a 30+ year LST CDR with a 30-min temporal and 5-km spatial resolution over 

Africa and Europe. Since the Meteosat Visible and Infra-Red Imager (MVIRI) on-board Meteosat 2–7 

is equipped with a single thermal infrared channel, single-channel LST retrieval models can ensure 

consistency across all Meteosat satellites. A consistent approach maximizes long-term and inter-satellite 

consistency [8].  

Most state-of-the-art satellite-based LST retrieval models, such as the Meteosat LST model from the 

Satellite Application Facility on Land Surface Analysis (LSA SAF), employ the generalized split-window 

model (GSW) [13–15], where atmospheric absorption is estimated through a two-channel regression of 
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top-of-atmosphere (TOA) brightness temperatures. This atmospheric correction is less dependent on 

atmospheric ancillary data than single-channel LST models, which depend completely on ancillary data 

from numerical weather prediction (NWP) models to estimate the atmospheric state. They range from 

statistical mono-window models (SMW), which use the observed 11 μm radiance, the total column water 

vapor (TCWV) from NWP models and a priori fitted LST model parameters [16,17] to physical  

mono-window models (PMW), which are based on radiative transfer modelling [8,18,19,]. PMWs 

require significantly more processing time than SMWs, as PMW algorithms run radiative transfer 

models for each satellite acquisition, while SMW algorithms estimate the correction term using a  

pre-computed statistical relationship. Reported accuracies are 1–2 K for GSW [12,20,21], 2.5 K or less 

for PMW [8,19] and 2–4 K for SMW [22]. Those performance metrics from the literature cannot be 

compared, since they refer to different satellite sensors with distinct viewing geometries, with variations 

in instrument calibration and different validation data for a physical parameter (LST), which is highly 

variable in time and space [8,10,23]. In order to investigate the achievable accuracy of Meteosat  

single-channel LST models, the models have to be exercised in a comparable setting. This study tries to 

answer the following questions: To what extent can a single-channel LST model achieve the accuracy 

of a two-channel LST model? Does a PMW outperform an SMW? Can we characterize uncertainties for 

single-channel Meteosat LSTs? 

To address those questions, we compare SMW, PMW and GSW using identical satellite observations 

from MSG. The evaluation is based on more than 60,000 in situ LST measurements from four dedicated 

LST validation stations operated by the Karlsruhe Institute of Technology (KIT). The stations are located 

in different climate zones and include dry to very moist atmospheres. Furthermore, we perform a series 

of sensitivity analyses to test the robustness of single-channel LST models to input uncertainties. The 

characterization of input uncertainty and its propagation towards the final LST retrievals is important 

for the estimation of product uncertainties, which can ultimately be used as quality indicators by users. 

This study is unique in that it compares PMW, SMW and GSW LST retrievals from identical satellite 

acquisitions with a large number of in situ measurements across different climate zones. 

2. Data and Methods 

2.1. Satellite Data  

We used data from the EUMETSAT MSG satellite. The MSG satellite carries the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI), a radiometer that measures the Earth every 15 min with a 

footprint of about 3 km at nadir. MSG is positioned at 0° longitude over the equator and views KIT’s 

four validation stations at low (25°, Dahra site) to moderate satellite viewing angles (45°, Evora site). 

LST was estimated in this study from TOA radiances of SEVIRI’s 10.8 μm channel. The standard 

calibration provided by EUMETSAT is applied in the study to generate TOA radiances and  

brightness temperatures.  

The LSA SAF team provided MSG 2 TOA 10.8 μm brightness temperatures, the LSA SAF cloud 

mask, the LSA SAF surface emissivity and the LSA SAF generalized split-window (GSW) LST retrieval 

on a 3 × 3 pixel window centered on the ground stations for the year 2010. The extracted time series had 

a temporal resolution of 15 minutes. We collocated satellite data and available KIT in situ measurements 
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from the year 2010 and ran a PMW and an SMW model using the TOA 10.8-μm brightness temperature 

together with the LSA SAF surface emissivity. We only considered satellite data that were classified as 

cloud free in the entire 3 × 3 pixel window by the cloud masking. Overall, this analysis included about 

60,000 collocated in situ and satellite observations. The in situ data, as well as the different LST models 

are described in detail in the following sections. 

2.2. Generalized Split-Window Model 

The LSA SAF applies the GSW model with a formulation similar to that proposed by Wan and  

Dozier [13,14] and adapted by Trigo et al. [15] and Freitas et al. [12] to the SEVIRI split-window 

channels. LST is obtained through a semi-empirical regression of SEVIRI 10.8- and 12.0-μm TOA 

brightness temperatures, where the correction of atmospheric influences is based on the different 

absorption of two adjacent infra-red bands [12]. The LST is estimated through a linear regression of the 

split-window TOA brightness temperatures. The regression coefficients depend explicitly on the land 

surface emissivity and implicitly on the TCWV obtained from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) operational forecasts and the satellite view zenith angles (VZA) [15]. The 

surface emissivity is provided for the split-window channels using a method based on the fraction of 

vegetation cover (FVC), also estimated by the LSA SAF from seviri visible and near-infrared  

channels [12,24]. Thus, the emissivity computation is driven by the vegetation state and takes into 

account daily FVC estimates from SEVIRI measurements and a global land cover classification [12,24]. 

Reported uncertainties for the LSA SAF LST dataset are in the range of 1–2 K [12], except for very 

moist atmospheres. A detailed description of the LSA SAF model can be found in the corresponding 

Algorithm Technical Base Document [15]; see also [12]. We used LST data from the LSA SAF archive 

for model inter-comparisons, which we label “GSW” LST in the following. 

2.3. Physical Mono-Window Model 

We applied a PMW model to the Meteosat time series described in Section 2.1. The PMW model 

used here is based on radiative transfer runs. Radiative transfer models can be used to estimate the 

upward and downward atmospheric path radiance (L↑, L↓) and the atmospheric transmittance (τ) in the 

thermal infrared for a specific atmospheric profile [18]. The downward atmospheric path radiance (L↓) 
is the hemispherically-averaged downward radiance. Approximating the Earth’s surface as a Lambertian 

emitter-reflector and neglecting atmospheric scattering, the radiance Lୡሺθሻ, recorded in channel c of a 

sensor onboard a satellite observing the Earth’s surface under view zenith angle θ may be written  

as (e.g., [25]): 

Lୡሺθሻ ൌ εୡBୡሺTୱሻτୡሺθሻ ൅ Lୡ↑ ሺθሻ ൅ Lୡ↓ ሺ1 െ εୡሻτୡሺθሻ (1) 

where εୡ and Tୱ denote land surface emissivity and LST, respectively. The calibrated Planck function 

BୡሺTୱሻ provides the radiance emitted by a blackbody at temperature Tୱ in channel c. The parameters τୡ, 
Lୡ↑ ሺθሻ and Lୡ↓  in Equation (1) are the corresponding surface to top of the atmosphere (TOA) transmittance 

and the atmospheric upward and downward radiances, respectively. These three parameters can be 

estimated based on the atmospheric humidity and temperature profiles. For a channel of finite spectral 

band width, the calibrated Planck function in the frequency domain may be approximated as: 
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where	c1, c2 are constants and α, β and νc depend on the spectral characteristics of the channel to be used. 

Inverting Equations (1) and (2) (e.g., [21,25]), the thermal radiance Lୡሺθሻ	measured at the sensor level 

can then be used to estimate LST: 
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The PMW LST in this study was calculated with Equation (3) for SEVIRI 10.8-μm clear-sky TOA 

brightness temperatures described in Section 2.1, together with surface emissivities (ε௖ሻ	taken from the 

operational LSA SAF dataset [26]. Values of Lୡ↑ ሺθሻ, Lୡ↓  and τୡሺθሻ were obtained via the Radiative 

Transfer for the Television Infrared Observation Satellite Operational Vertical Sounder code (RTTOV, 

Version 11.2), which is a fast radiative transfer model used operationally at the ECMWF [27]. RTTOV 

is significantly faster than the commonly-used Moderate Resolution Atmospheric Transmission 

(MODTRAN) line-by-line radiative transfer code [28]. It uses pre-computed transmittance look-up-tables 

(LUTs) calculated from a spectroscopic database [29]. PMWs require radiative transfer runs during the 

satellite data processing. For large data processing, it is hence crucial to run a fast radiative transfer 

model. Bento [30] has recently compared simulated MODTRAN and RTTOV TOA brightness 

temperatures and reports an overall bias of about 0.2 K in the SEVIRI spectral range, which is close to 

the SEVIRI instrumental noise.  

RTTOV runs performed in this study used atmospheric profiles (temperature and specific humidity) 

from the ECMWF ERA-Interim reanalysis dataset as input [31], which are available 6-hourly at a spatial 

resolution of about 75 km. RTTOV simulations for model atmospheres with 21 pressure levels (1000–1 hPa) 

were performed using the ERA-Interim profiles closest in time and space to each satellite observation. 

2.4. Statistical Mono-Window Model 

The third LST model we tested is an SMW model. SMWs consist of empirical approaches that relate 

TOA brightness temperatures of a single atmospheric window channel to LST [16,22,25], generally via 

a simple linear regression. Here, we linearized the radiative transfer equation, while at the same time 

maintaining an explicit dependency on surface emissivity:  

Tୱ ൌ A
Tୠሺθሻ
εୡ

൅ B
1
εୡ
൅ C (4) 

where Tୠ is the TOA brightness temperature in channel c and ε௖ stands for the corresponding spectral 

surface emissivity. 

We estimated the regression coefficients A, B and C for different classes of TCWV and VZA. Following 

Freitas et al. [12] for the operational LSA SAF GSW model and Freitas et al. [22] for a single-channel 

LST model for the GOES satellite series, the calibration/validation of Equation (4) made use of synthetic 

radiances obtained with the radiative transfer model MODTRAN 4.0. We selected MODTRAN and not 

RTTOV to tune the SMW model, as we assume the line-by-line MODTRAN model to be slightly more 
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accurate than the “broad band” RTTOV model. In contrast to the PMW model, the processing speed of 

the radiative transfer model is more or less irrelevant for SMW, as the radiative transfer simulations are 

only computed once to establish the model coefficients. 

MODTRAN simulations were performed for a range of clear sky atmospheric profiles and surface 

variables representative for global conditions [32]. The synthetic radiances were split into two subsets: 

(1) A training dataset for determining the statistical mono-window coefficients (Equation 4); and (2) an 

independent dataset for model verifications. The training dataset comprises 116 carefully-chosen profiles 

to encompass the bivariate distribution of TCWV and LST. A total of over 845,000 simulations was 

obtained by varying the viewing geometry and surface conditions for each profile over the following 

ranges: (1) VZA from 0° to 75°; (2) surface emissivity between 0.926 and 0.998; and (3) surface 

temperatures ranging from near surface air temperature minus 15 K to near surface air temperature plus 

15 K. Following the approach of Freitas et al. [22], coefficients A, B and C in Equation (4) were then 

determined for 8 different TCWV classes (0 cm–6 cm in steps of 7.5 mm) and 15 VZA classes (0°–75° 

in steps of 5°).  

We applied the above described SMW model to the extracted SEVIRI 10.8-μm clear-sky TOA 

brightness temperature time series. As for the PMW and GSW model, surface emissivities (ε௖ሻ for the 

SMW are taken from the operational LSA SAF dataset [26]. 

2.5. Theoretical Uncertainty Characterization  

Potential LST retrieval errors were assessed through the use of the synthetic validation database 

described in Section 2.4, which contained over 15,500 independent simulations. For the uncertainty 

analysis presented in this study, we followed the approach of Freitas et al. [12]. We provided TOA 

brightness temperatures, surface and atmospheric information from the database as input to the SMW 

and PMW model; the calculated LST output was then compared with the corresponding (“true”) surface 

temperature from the database. In addition to the model error, we assessed the sensitivity of the SMW 

and PMW to radiometric noise, uncertainty in surface emissivity and NWP by superimposing artificial 

errors to PMW and SMW inputs.  

The value used for SEVIRI 10.8-μm radiometric noise is based on radiometric performances for 

SEVIRI IR 10.8 μm compared to the Infrared Atmospheric Sounding Interferometer (IASI)  

(bias < 0.2 K) [33]. Values for noise in brightness temperature were generated from a uniform random 

distribution within the conservative interval (−0.3 K, 0.3 K). 

For the estimation of the surface emissivity error, we took into account that bare ground and semi-

arid surfaces (generally with lower emissivities) present higher variability and, therefore, higher 

uncertainty than areas covered by vegetation. As such, emissivity uncertainties used in this study were 

obtained from random uniform distributions within the intervals (−0.04, 0.04) for εc < 0.95, (−0.02, 0.04) 

for 0.95 ≤ εc < 0.98 and (−0.01, 0.01) for εc ≥ 0.98 The rationale for this choice is based on emissivity 

variability for bare ground surfaces (εc < 0.95ሻ, sparsely- (0.95 ≤ εc < 0.98) and densely- (εc ≥ 0.98) 

vegetated areas [12]. 

The PMW model requires a characterization of the errors associated with the atmospheric profiles. 

Since these are obtained from ERA-Interim nearest in space and time to the satellite observation, we 

assume that the uncertainty in collocation may be used as a measure of the profile uncertainty. Thus, the 
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impact of profile errors on retrieved LST values was estimated by replacing the profiles at hour h by the 

corresponding ones at hour h + 6. A similar procedure was used to determine the impact of TCWV errors 

on LST estimates from the SMW. It is worth recalling that TCWV is an implicit input to the SMW: This 

variable is used to determine the regression coefficients (Equation (4)). Therefore, and as explained in 

detail in Freitas et al. [12], studies of the impact of TCWV uncertainties on LST need to combine: (i) The 

effect on the LST estimate due to the choice of the wrong set of coefficients; and (ii) the probability of 

that event.  

2.6. Ground-Based LST Measurements  

The KIT operates four permanent validation stations for satellite-based LST retrieval. The stations, 

being part of LSA-SAF’s validation effort and supported by EUMETSAT, were specifically chosen and 

designed to validate LST derived from MSG/SEVIRI. They are located in large homogenous areas 

within the field of view of the METEOSAT satellites and lie in different climate zones, which provides 

a broad range of atmospheric conditions for product validation [34]. The locations of the four validation 

stations on the SEVIRI Earth disk are indicated in Figure 1. An overview of the KITs validation sites is 

provided in Table 1.  

 

Figure 1. Locations of the Karlsruhe Institute of Technology’s (KIT) validation stations on 

the Meteosat Second Generation (MSG)/Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) disk. 

In principle, LST datasets can readily be validated with ground-truth radiometric measurements. 

However, this so-called ‘temperature-based validation’ is largely complicated by the spatial scale 

mismatch between satellite- and ground-based sensors: areas observed by ground radiometers usually 

cover about 10 m2, whereas satellite measurements in the thermal infrared typically cover between 1 km2 

and 100 km2 [34]. Furthermore, natural land covers and the corresponding land surface temperatures are 

spatially quite heterogeneous: therefore, for validation measurements to be representative for  

satellite-derived LST, they have to be performed in areas that are homogenous at the satellite pixel scale. 

The size of the area that needs to be viewed by the validation instrument at the ground depends on the 

within-pixel variability of the surface and on how well measurements of several “end members” can be 
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mixed in order to obtain a representative value for the satellite pixel. This so-called end-member-cover 

method is based on a linear spectral mixing approach and assumes that the total IR radiance emitted by 

the land surface within a satellite pixel can be reasonably well approximated by a linear mixture of the 

IR radiance emitted by the relevant surface cover types within that area [35]. The mixing of measurements 

obtained for different end-members requires information on their respective fractions within the sensor’s 

field of view and also on scene emissivity [26,36,37]. At KIT’s validation sites, the relevant spectral 

end-members (e.g., trees, grassland and background soil) were determined from an independent 

component analysis of high-resolution satellite data (visible and near-infrared). The fractional coverages 

of the determined end-members were then obtained by land cover classification [35]. 

Table 1. Overview of KITs validation stations. TCWV, total column water vapor. 

 Dahra RMZ Gobabeb Evora 

Location 

Senegal 

Lat.: 15.402336 

Lon.: −15.432744 

Namibia 

Lat.: −23.010532 

Lon.:18.352897 

Namibia 

Lat.: −23.550956 

Lon.: 15.05138 

Portugal 

Lat.: 38.540244 

Lon.: −8.003368 

Elevation 90 m 1450 m 406 m 230 m 

Climate Zone Tropical Wet-Dry Steppe Desert Mediterranean 

TCWV 2010 17 to 56 mm 2 to 28 mm 1 to 38 mm 2 to 43 mm 

Vegetation 

Grassland; 

96% grass, 

4% tree 

Savanna; 

85% grass/soil, 15% 

tree 

Baren; 

32% tree, 68% 

grass 

Woody savanna with 

isolated groups of 

evergreen oak trees 

The main instrument for the in situ determination of LST at KIT’s validation stations is the precision 

radiometer “KT15.85 IIP” produced by Heitronics GmbH, Wiesbaden, Germany. KT15.85 IIP radiometers 

measure thermal infra-red radiance between 9.6 µm and 11.5 µm, have a temperature resolution of 0.03 K 

and an accuracy of ±0.3 K over the relevant temperature range [38]. The KT15.85 IIP has a drift of less 

than 0.01% per month: The high stability is achieved by linking the radiance measurements via  

beam-chopping (a differential method) to internal reference temperature measurements and was confirmed 

by a long-term parallel run with the self-calibrating radiometer “RotRad” from Commonwealth Scientific 

and Industrial Research Organisation (CSIRO), which is continuously stabilized with 2 blackbodies [37]. 

The parallel run at the Evora site started in April 2005; a year later, the agreement between the instruments 

was still excellent (correlation 0.99). Due to the KT-15.85 IIP’s narrow spectral response function and the 

small distance between the radiometers and the surface atmospheric attenuation of the surface-leaving, 

thermal infrared radiation is negligible. However, the measurements of the surface-observing KT-15.85 

IIPs contain radiance emitted by the surface (i.e., the target signal), as well as reflected downward IR 

radiance from the atmosphere, which needs to be corrected for [34]. Therefore, at each station, an 

additional KT-15.85 IIP measures downward longwave IR radiance from the atmosphere at 53° VZA: 

measurements under that specific zenith angle are directly related to downward hemispherical  

radiance [39], so that no ancillary data for deriving ground truth LST are needed. 

Accurate estimations of land surface emissivity (LSE) are essential for obtaining satellite LST 

products, but also for limiting the uncertainty of ground-based LST estimates. Especially sites with larger 

fractions of bare ground are prone to be misrepresented in satellite-retrieved LSEs: Comparisons with in situ 

LSE revealed that over arid regions, satellite-retrieved LSEs differ by more than 3% [36]. Since for 
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vegetated sites, LSE is a dynamic quantity, we use LSA-SAF’s daily LSE to derive in situ LST from the 

in situ radiance measurements at Dahra (Senegal, tiger bush, 45 m a.s.l.), Rust Mijn Ziel (RMZ) 

(Namibia, Kalahari bush, 1450 m a.s.l.) and Evora (Portugal, cork-oak tree forest, 230 m a.s.l.). In situ 

LST at the desert site Gobabeb (Namibia, gravel plains, 450 m a.s.l.) is derived using a static emissivity 

obtained from in situ measurements [36].  

3. Results and Discussions 

3.1. Theoretical Uncertainty Analysis 

The total impact of model and input uncertainties, including uncertainties in surface emissivity, NWP 

and sensor calibration, measured as the root mean square difference (RMSD) of retrieved LST versus 

the “true” surface temperature in the database, is presented in Figure 2 for different values of VZA and 

TCWV. RMSD and bias obtained for the validation database are shown in Table 2.  

 

Figure 2. Theoretical uncertainty for MSG/SEVIRI LST estimates. (a) Physical radiative 

transfer-based mono-window model (PMW); (b) statistical mono-window model (SMW). 

The values are the root mean square differences, assuming model and input uncertainties. 

VZA, satellite viewing angle.  

The 2 K target accuracy (RMSD) of the LSA SAF LST dataset is reached for the majority of angles 

and TCWV classes for PMW and SMW, degrading into larger errors for very moist atmospheres with 

high angles, i.e., for very large optical paths. The slopes of the lines in Figure 2 suggest that TCWV 

errors are most relevant for low-to-moderate view angles. For very moist atmospheres (TCWV > 50 mm) 

and high viewing angles (VZA > 55 mm), the SMW performed slightly better than the PMW. We 

hypothesize that this reflects the implicit sensitivity of the PMW to the NWP input: Freitas et al. [12] 

showed that uncertainties in atmospheric profiles can have a strong impact on LST retrievals. While 

SMWs only require TCWV as input, PMWs require atmospheric temperature and water vapor profiles, 

which can introduce additional uncertainties, especially for very moist atmospheres. We found that LST 

errors associated with emissivity uncertainties are expected to be within 1.0 K and 2.8 K in 90% of the 
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estimates obtained with the SWM and PWM model, respectively. However, the impact of emissivity in 

both models is much smaller under moist atmospheres. 

Table 2. Theoretical uncertainty for MSG/SEVIRI LST estimates for the PMW and SMW. 

RMSD and bias associated with both model and input uncertainty. 

 PMW SMW 

 RMSD (K) BIAS (K) RMSD (K) BIAS (K) 

TCWV ≤ 45 mm 1.6 −0.2 1.6 −0.1 

TCWV > 45 mm 3.3 −1.1 3.4 −0.6 

The PMW and SMW uncertainties we simulated for TCWVs ≤ 45 mm (RMSD of 1.6 K) more or less 

correspond to the uncertainties reported by Freitas et al. [12] for GSW. For moister atmospheres 

(TCWVs > 45 mm) the PMW and SMW uncertainties (RMSD of up to 10 K and 6 K, respectively) 

significantly exceed the simulated GSW uncertainties (max. error about 4.5 K; Freitas et al. [12]), 

particularly for high VZAs. This very likely demonstrates the different sensitivity of the single-channel 

and GSW models to uncertainties related to inaccurate NWP input. Single-channel models rely entirely 

on NWP data to estimate the atmospheric state, while the two split-window channels provide additional 

information about the atmospheric absorption for the GSW model [8]. 

3.2. Ground-Based Validation 

For a range of atmospheric conditions, the two investigated single-channel LST models match the 

accuracy of the GSW model (Figure 3). A summary of the bias and the RMSD associated with the 

different LST models is provided in Tables 3 and 4.  

For dry to medium-moist atmospheres (TCWV up to 45 mm), RMSDs of the PMW and the SMW 

model ranged between 1.8 K and 2.6 K (Table 3). This is close to the 2 K target accuracy of the GSW-based 

LSA SAF dataset. For the Evora and RMZ sites, the PMW model matched the accuracy of the GSW 

with RMSDs of 1.9 K (PMW) and 1.9–2.0 K (GSW) and had an absolute bias < 1 K. For the sites 

Gobabeb and Dahra, the PMW (RMSD 1.8 K and 2.6 K) was slightly less accurate than the GSW (RMSD 

1.5 K and 2.3 K), while the SMW’s RMSD was up to 0.5 K larger (TCWV up to 45 mm; Table 3).  

Yu et al. [21] have recently compared PMW and GSW LSTs from the Landsat satellite against 41 ground 

observations from the Surface Radiation (SURFRAD) Budget Network in moderate climate zones. They 

have reported the highest accuracy for the PMW with a difference in RMSD of only 0.1 K compared to 

the GSW: Our analysis does not confirm this finding. We show that PMW agrees with GSW to within 

0.1–0.5 K for most atmospheric conditions tested here.  

In Gobabeb, RMZ and Dahra, the PMW and SMW performed very similarly (ΔRMSD 0.2 K) for 

TCWV < 45 mm. In Evora, the PMW had a 0.6 K lower RMSD and 0.7 K lower bias compared to the 

SMW. At very high TCWVs (>45 mm), we observe a 1 K higher RMSD for the PMW compared to the 

SMW at Dahra. Hence, the computationally-expensive PMW model outperforms the SMW only at one 

out of four investigated stations.  

Observed RMSD matches the theoretical uncertainties (Section 3.1) to within 0.3–1 K for dry to 

medium-moist atmospheres (Tables 2 and 3). Slightly larger RMSDs can reflect uncertainty and scaling 

differences of the ground measurements not included in the theoretical uncertainty analysis. 
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Figure 3. Comparison of LST between in situ measurements from the KIT sites and 

Meteosat-based retrievals for different TCWV classes. The boxplots show the median, the 

first and third quartile with whiskers at the 95th and fifth percentiles. GSW: the Satellite 

Application Facility on Land Surface Analysis’s (LSA SAF) operational GSW. (a) KIT 

Gobabeb station; (b) KIT Evora station; (c) KIT Dahra station; (d) KIT RMZ station.  

For very moist atmospheres, which are only encountered at the Dahra station, we observed a distinctly 

higher RMSD (Δ2.9 K–Δ1.9 K) and bias (Δ2.1–Δ0.8 K) for the two single-channel models compared to 

the GSW (Table 4) and a higher RMSD (>3 K) compared to the theoretical error analysis (Figure 2). In 

addition, we observed different model performances for selected TCWV classes and sites (Figure 3). We 

investigated those differences and provide possible explanations in the following sections.  
  



Remote Sens. 2015, 7 13150 

 

Table 3. Statistics for the comparison of LST between in situ measurements and the 

operational LSA SAF dataset for dry to medium-moist atmospheres (TCWV ≤ 45 mm).  

TCWV ≤ 45 mm 
GSW PMW SMW 

RMSD (K) BIAS (K) RMSD (K) BIAS (K) RMSD (K) BIAS (K) 

Gobabeb 1.5 0.4 1.8 0.8 2.0 0.9 

Evora 2.0 1.2 1.9 0.7 2.5 1.4 

Dahra 2.3 −0.8 2.6 −1.2 2.4 0.4 

RMZ 1.9 −0.5 1.9 −0.8 1.7 −0.8 

Table 4. Statistics for the comparison of LST between in situ measurements and the 

operational LSA SAF dataset for very moist atmospheres (TCWV > 45 mm) experienced at 

the KIT ‘Dahra’ station.  

TCWV > 45 mm 
GSW  PMW SMW 

RMSD (K) BIAS (K) RMSD (K) BIAS (K) RMSD (K) BIAS (K) 

Dahra 3.4 −2.2 6.3 −4.3 5.3 −3.0 

3.2.1. Gobabeb Station 

For the desert station Gobabeb mono-window LSTs met the LSA SAF target accuracy requirement 

(RMSD ≥ 2 K and bias < 1 K; Table 3 and Figures 3a and 4). 

 

Figure 4. Comparison between in situ LST (KIT Gobabeb station, 2010) and Meteosat LST 

from the PMW for TCWVs < 35 mm: (a) Nighttime; (b) daytime. 

Due to the exceptionally wet January/February and October/November 2010, the presented analysis 

included a large number of observations for a wide range of atmospheric conditions, including also rather 

moist atmospheres (Figure 3a). Despite the overall good model performances, the two single-channel 

models had a distinct positive bias for dry atmospheres compared to the LSA SAF dataset (0.8–1.2 K 

versus 0.1–0.2 K, respectively; Figure 3a). This single-channel bias is close to zero during nighttime, but 

is greater than 1 K during daytime (Figure 4). Other studies (e.g., [8]) also report that the largest  

single-channel biases occur at LST values greater than 310 K, which is in line with our observations. 

The observed daytime LST bias likely demonstrates the implicit sensitivity of the mono-channel models 
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on NWP errors. The GSW model, which is less dependent on accurate NWP input, does not show a 

significant daytime bias in Gobabeb.  

3.2.2. Dahra Station 

In Dahra, single-channel LSTs reached the LSA SAF target accuracy for TCWV up to 30 mm  

(RMSD < 2 K, bias < 0.5 K; Figure 3c). For higher TCWVs, the PMW, SMW and GSW models had a 

high negative Meteosat LST minus in situ LST bias (−4.3 K, −3.0 K and −2.2 K, respectively; Table 4, 

Figure 5). RMSD are significantly higher for PMW and SMW compared to GSW (Δ 2.9 and 1.9 K, 

respectively; Table 4) and the theoretically-expected error (Δ 3–4 K; Table 4 and Figure 2). 

 

Figure 5. (a) LSA SAF’s operational GSW; (b) PMW.  

Cloud contaminations and/or uncertainties in NWP (ECMWF), together with the limitations of the 

mono-channel methods under analysis, might explain the difference between the observed RMSD and 

the theoretical uncertainties.  

Errors due to cloud contamination are not accounted for in the theoretical uncertainty analysis. Clouds 

are usually significantly colder than the land surface, and cloud contamination should hence result in 

negative LST biases [8]. This hypothesis is supported by the high temporal scatter of the TOA-brightness 

temperature (example: Figure 5, 24 September 2010). Clear sky TOA brightness temperature is mainly 

driven by solar heating and follows a continuous diurnal cycle [10]. This is clearly not the case on  

24 September 2010. 

In addition, uncertainties in TCWV fields might be higher in Dahra than the NWP uncertainties 

accounted for in the sensitivity study (Section 2.5). This second hypothesis is supported by the observed 

1–2 K lower GSW bias compared to PMW and SMW (Table 4). As detailed in Section 3.1, GSWs 

perform atmospheric correction rather independently from the NWP model input, while PMW and SMW 

are quite sensitive to errors in NWP models. For a given (measured) TOA brightness temperature and a 

very dry atmospheric profile, which is wrongly assumed to be more moist by the NWP model, this can 
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lead to a considerable underestimation of LST retrieved by single-channel models: As the true atmosphere 

becomes dryer, it also becomes more transparent, and the retrieved LST decreases [8]. We have characterized 

the NWP error in the sensitivity study by replacing the profiles at hour h by the corresponding ones at 

hour h + 6. This approach might not be valid for tropical conditions. Moreover, differences in viewing 

geometry between the ground and satellite radiometer can introduce uncertainties related to inaccurate 

emissivity in Dahra, where the surface emissivities varies strongly over the seasons [20].  

3.2.3. RMZ and Evora Stations 

The radiative transfer-based single-channel approach (PMW) met LSA SAF target accuracy at the 

Evora and RMZ sites (RMSD around 2.0 K, bias < 1.0 K; Table 3 and Figure 3b,d).  

For Evora, all models, including GSW, had a significant positive bias, while we observed a negative bias 

for all models at the RMZ station (0.7–1.2 K and −0.5–−0.9 K, respectively; Table 3 and Figure 3b,d). The 

biases are known from previous validation studies of the operational LSA SAF LST dataset and are 

given [20] as 0.8 K and −0.4 K for Evora and RMZ, respectively. These biases partially reflect the 

achievable accuracy with in situ LST. These have to represent large-scale satellite footprints covering 

several square kilometers: although the land cover at the Evora and RMZ validation sites is spatially 

quite homogeneous [35], they represent a mixture of grass, background soil and trees, which cause 

shadows and complicate the ground-based LST determination [40]. The negative biases observed for 

RMZ are thought to be related to the site’s high elevation (1360 m a.s.l.), which may not be correctly 

accounted for by the LST retrieval algorithms. The PMW and SMW do not perform an orographic 

correction, i.e., we use atmospheric profiles as the model input, which corresponds to the ECMWF grid 

cell height and not to the elevation at the station.  

4. Conclusions  

Long-term LST climate data records with a high temporal and spatial resolution are useful for climate 

monitoring and climate applications [7]. This requirement can be met by extending LST data records 

from geostationary satellites into the past. Since heritage sensors provide only one thermal infrared band, 

multi-channel LST retrieval approaches cannot be used. This study thus evaluated the performance of 

single-channel retrieval models developed for the geostationary Meteosat satellite against in situ LST and 

the GSW-based LSA SAF dataset. The key question that we investigated is to what extent a single-channel 

LST model can achieve the accuracy of a two channel GSW model.  

This comprehensive validation study, which included more than 60,000 in situ LST measurements 

for very different atmospheric conditions, demonstrates that Meteosat-based single-channel LSTs agree 

with those from GSW to within 0.1–0.5 K and are within or very close to the 2 K target accuracy of the 

LSA SAF Meteosat LST data, except for very moist atmospheres (TCWV > 45 mm), but with the added 

benefit that they can be applied across satellite generations. TCWVs above 45 mm primarily occur in 

tropical and subtropical regions, which are regularly cloud covered and correspond to less than 5% of 

the MSG disk. We can hence expect the overall majority of MSG single-channel LSTs to meet the 2–3 K 

“currently achievable performance” defined by the Global Climate Observing System (GCOS) [7].  

However, this study also reveals a significant negative bias (−4.3 K) for the PMW for very moist 

atmospheres (TCWV > 45 mm) at Dahra station, Senegal. We found some indications that cloud 
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contamination and/or inaccurate NWP input contributes to this strong negative bias. This issue needs to 

be investigated before generating a CDR.  

This study also demonstrates that it is possible to characterize retrieval uncertainties for Meteosat 

single-channel LST, except for very moist atmospheres, which will simplify, for instance, the 

assimilation of those data into land surface models. RMSDs estimated from a theoretical, radiative 

transfer-based sensitivity study matched RMSDs from the ground-based comparison within 0.3–1 K for 

TCWVs ≤ 45 mm. For very moist atmospheres with TCWV > 45 mm, we observe a distinct higher 

RMSD (>3 K) compared to the theoretical uncertainties. We found indications that this is partly due to 

cloud contamination, which is not accounted for in the theoretical error analysis. Moreover, the adapted 

approach to characterize NWP uncertainties by simply replacing NWP profiles might not be realistic for 

tropic conditions. More advanced TCWV error characterizations, such as, e.g., an error characterization 

based on the NWP background error covariance matrix, as proposed by Peres and Camara [41], should 

be tested. The authors propose to put a “low quality” flag on Meteosat single-channel LST retrievals for 

TCWV > 45 mm and to inform users that associated LST uncertainties might not be realistic for very 

moist atmospheres. Additional LST validation stations in very moist climate zones will be highly 

valuable to find realistic LST model uncertainty for those conditions.  

The results of this study suggest that computationally more expensive PMWs do not necessarily 

outperform SMWs. We observed a distinct higher accuracy (ΔRMSD > 0.2 K) for the PMW compared 

to SMW only at one at of four validation stations.  

Possible improvements of the current PMW and SMW model should be addressed in future studies. 

The presented single-channel models might be improved by including an orographic correction for the 

atmospheric profiles and by an improved cloud screening in tropical regions. 

The results presented here are strictly only valid for MSG, since the MFG thermal sensor has a slightly 

different spectral response function, a lower digital quantification and a less accurate absolute 

radiometric accuracy. Accordingly, the LST retrieval errors may be greater than the errors presented in 

this study. Inaccuracies arising from emissivity retrieval and satellite calibration were not considered 

here, despite their relevance for the quality of a Meteosat LST CDR. Therefore, future work needs to 

investigate these error sources. Although it might be difficult to remove inter-Meteosat calibration errors 

completely, the present work demonstrates that, for the investigated ground stations, LST retrievals from 

well-calibrated MFG data can reach the accuracy of LSA SAF’s operational GSW.  
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