Viticultural Suitability Analysis Based on Multi-Source Data Highlights Climate-Change-Induced Decrease in Potential Suitable Areas: A Case Analysis in Ningxia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Vineyard Occurrence Record
2.2. Data Sources and Environment Variables
2.3. MaxEnt Setting and Modeling
2.4. Future Climate Scenarios
2.5. Data Analysis
3. Results
3.1. Accuracy of Maxent Model
3.2. Dominant Environment Variables Impacting Wine Grape Distribution
3.3. Threshold Values of Six Dominant Environment Variables
3.4. Potential Suitable Areas for Wine Grape under Current Climate Condition
3.5. Potential Suitable Areas for Wine Grape in Long-Term Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duchene, E. How can grapevine genetics contribute to the adaptation to climate change? OENO One 2016, 50, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed trends in winegrape maturity in Australia. Glob. Chang. Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Tóth, J.P.; Végvári, Z. Future of winegrape growing regions in Europe. Aust. J. Grape Wine Res. 2016, 24, 64–72. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; de Cortazar-Atauri, I.G.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers wine growing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Gerard, S. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Honorio, F.; García-Martín, A.; Moral, F.J.; Paniagua, L.L.; Rebollo, F.J. Spanish vineyard classification according to bioclimatic indexes. Aust. J. Grape Wine Res. 2018, 24, 335–344. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliever, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkeley, CA, USA, 1974; pp. 58–70. [Google Scholar]
- García de Cortázar-Atauri, I.; Brisson, N.; Gaudillere, J.P. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol. 2009, 53, 317–326. [Google Scholar] [CrossRef]
- Zhang, C.T. The Climatic Regionalization of Viticulture and Grapevine Variety Zoning over China; Nanjing University of Information Science & Technology: Nanjing, China, 2012. [Google Scholar]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: A multi-model assessment. Clim. Chang. 2019, 152, 179–193. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G.V. Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.; Matzarakis, A. Viticulture in southwest Germany under climate change conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Ruml, M.; Vukovic, A.; Vujadinovic, M. On the use of regional climate models: Implications of climate change for viticulture in Serbia. Agric. For. Meteorol. 2012, 158, 53–62. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Fila, G.; Gardiman, M.; Belvini, P.; Meggio, F.; Pitacco, A. A comparison of different modelling solutions for studying grapevine phenology under present and future climate scenarios. Agric. For. Meteorol. 2014, 195–196, 192–205. [Google Scholar] [CrossRef]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus Séances L’académie D’agriculture Fr. 1978, 64, 1117–1126. [Google Scholar]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece. Int. J. Climatol. 2017, 38, 2097–2111. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Su, L.; Li, H.; Zhang, L.; Wei, J. Global warming effects on climate zones for wine grape in Ningxia region, China. Theor. Appl. Climatol. 2020, 140, 1527–1536. [Google Scholar] [CrossRef]
- White, R.E. The value of soil knowledge in understanding wine terroir. Front. Plant Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; Bravo, S.; Amoros, J.A.; Pérez-de-los-Reyes, C.; García-Pradas, J.; Sanchez, M.; García-Navarro, F.J. A morphological approach to evaluating the nature of vineyard soils in semiarid Mediterranean environment. Eur. J. Soil Sci. 2022, 73, e13201. [Google Scholar] [CrossRef]
- Mackenzie, D.E.; Christy, A.G. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Water Sci. Technol. 2005, 51, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Del Río, S.; Álvarez-Esteban, R.; Alonso-Redondo, R.; Hidalgo, C.; Penas, Á. A new integrated methodology for characterizing and assessing suitable areas for viticulture: A case study in Northwest Spain. Eur. J. Agron. 2021, 131, 126391. [Google Scholar] [CrossRef]
- Strack, T.; Schmidt, D.; Stoll, M. Impact of steep slope management system and row orientation on canopy microclimate. Comparing terraces to downslope vineyards. Agric. For. Meteorol. 2021, 307, 108515. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Paniagua, L.L.; García, A. Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices. Int. J. Biometeorol. 2014, 58, 2139–2152. [Google Scholar] [CrossRef] [PubMed]
- Irimia, L.M.; Patriche, C.V.; Quenol, H.; Sfîcă, L.; Foss, C. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor. Appl. Climatol. 2017, 131, 1069–1081. [Google Scholar] [CrossRef]
- Alsafadi, K.; Mohammed, S.; Habib, H.; Kiwan, S.; Hennawi, S.; Sharaf, M. An integration of bioclimatic, soil, and topographic indicators for viticulture suitability using multi-criteria evaluation: A case study in the Western slopes of Jabal Al Arab-Syria. Geocarto Int. 2020, 35, 1466–1488. [Google Scholar] [CrossRef]
- Patriche, C.V.; Irimia, L.M. Mapping the impact of recent climate change on viticultural potential in Romania. Theor. Appl. Climatol. 2022, 148, 1035–1056. [Google Scholar] [CrossRef]
- Skahill, B.; Berenguer, B.; Stoll, M. Temperature-based climate projections of Pinot noir suitability in the Willamette Valley American viticultural area. OENO One 2022, 56, 209–225. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Chen, Q.; Chen, C.Y.; Li, X.; He, P. Assessment of spatial distribution of Cabernet Sauvignon in Hengduanshan valley of western Sichuan based on MaxEnt model. Chin. J. Agric. Resour. Reg. Plan. 2020, 4, 144–155. [Google Scholar]
- Wang, J.; Zhou, G.S. The climatic suitability and climatic impact factors affecting the wine grapes (Vitis vinifera L.) planting distribution in China. Acta Ecol. Sin. 2021, 41, 2418–2427. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Estes, L.D.; Bradley, B.A.; Beukes, H.; Hole, D.G.; Lau, M.; Oppenheimer, M.G.; Schulze, R.; Tadross, M.A.; Turner, W.R. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Glob. Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Guo, Y.L.; Zhao, Z.F.; Qiao, H.J.; Wang, R.; Wei, H.Y.; Wang, L.K.; Gu, W.; Li, X. Challenges and development trend of species distribution model. Adv. Earth Sci. 2020, 35, 1292–1305. [Google Scholar]
- Callen, S.T.; Klein, L.L.; Miller, A.J. Climatic niche characterization of 13 North American Vitis species. Aust. J. Grape Wine Res. 2016, 67, 339–349. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). State of the World Vitivinicultural Sector in 2022. 2022. Available online: https://www.oiv.int/public/medias/8778/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6.pdf (accessed on 1 May 2022).
- Song, K.Y. Methods of enhancing economic benefits of wine industry in Ningxia. Ningxia J. Agric. For. Sci. Technol. 2020, 61, 60–62. [Google Scholar]
- Zhang, Q.Z.; Tang, Y.H. Effects of climate change on wine grape production in China. China Brew. 2021, 40, 1–6. [Google Scholar]
- Van Leeuwen, C.; Schultz, H.; Garcia de Cortazar-Atauri, I.; Duchêne, E.; Ollat, N.; Pieri, P.; Bois, B.; Goutouly, J.P.; Quénol, H.; Touzard, J.M.; et al. Why climate change will not dramatically decrease viticultural suitability in main wine producing areas by 2050. Proc. Natl. Acad. Sci. USA 2013, 110, E3051–E3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, M.X.; Zhang, H.; Gao, J.X.; Ju, C.H.; Wang, Y.S.; Liu, D.T. Different methods comparison of delineating the ecological protection red line for biodiversity conservation. Acta Ecol. Sin. 2019, 39, 6959–6965. [Google Scholar]
- Zhang, X.Y.; Li, H.Y.; Chen, W.P.; Zhang, L.; Su, L.; Wang, J. Ecological regionalization of wine grape varieties in Ningxia. Chin. J. Ecol. 2014, 33, 3112–3119. [Google Scholar]
- Serratosa, M.P.; Marquez, A.; Lopez-Toledano, A.; Medina, M.; Merida, J. Changes in hydrophilic and lipophilic antioxidant activity in relation to their phenolic composition during the chamber drying of red grapes at a controlled temperature. J. Agric. Food Chem. 2011, 59, 1882–1892. [Google Scholar] [CrossRef]
- Xie, X.L. Study on Status of Wine Regions in China and Impact of Climate Change on It; Northwest A&F University: Xianyang, China, 2018. [Google Scholar]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?tab=overview (accessed on 10 September 2021).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Zingore, K.M.; Sithole, G.; Abdel-Rahman, E.M.; Mohamed, S.A.; Ekesi, S. Global risk of invasion by Bactrocera zonata: Implications on horticultural crop production under changing climatic conditions. PLoS ONE 2020, 15, e0243047. [Google Scholar]
- Singh, K.; McClean, C.J.; Büker, P.; Hartley, S.E.; Hill, J.K. Mapping regional risks from climate change for rainfed rice cultivation in India. Agric. Syst. 2017, 156, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Papier, C.M.; Poulos, H.M.; Kusch, A. Invasive species and carbon flux: The case of invasive beavers (Castor canadensis) in riparian Nothofagus forests of Tierra del Fuego, Chile. Clim. Chang. 2019, 153, 219–234. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with MaxEnt: New extensions and acomprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Manning, M. The treatment of uncertainties in the fourth IPCC assignment report. Adv. Clim. Chang. Res. 2006, 2, 13–21. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Chang. Res. 2019, 15, 519–525. [Google Scholar]
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.L.; Wang, J.; Zhang, X.Y.; Chen, R.W.; Hu, H.Y. Rainfall effect of rainfall on the quality of wine grape during the ripening stage at the east foot of Helan Mountain. Chin. J. Agrometeorol. 2020, 41, 156–161. [Google Scholar]
- Sun, Z.X.; Bai, H.Q.; Ye, H.C.; Zhuo, Z.Q.; Huang, W.J. Three-dimensional modelling of soil organic carbon density and carbon sequestration potential estimation in a dryland farming region of China. J. Geogr. Sci. 2021, 31, 1453–1468. [Google Scholar] [CrossRef]
- Cheng, G.; He, Y.N.; Yue, T.X.; Wang, J.; Zhang, Z.W. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules 2014, 19, 13683–13703. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, H.; Li, H. The influence of recent climate variability on viticultural zoning and variety regionalisation of Vitis vinifera in China. OENO One 2020, 54, 523–541. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Lovett, A. A suitability model for viticulture in England and Wales: Opportunities for investment, sector growth and increased climate resilience. J. Land Use Sci. 2018, 13, 414–438. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Grenier, P.; Barriault, E.; Logan, T.; Blondlot, A.; Bourgeois, G.; Chaumont, D. Probabilistic climate change scenarios for viticultural potential in Québec. Clim. Chang. 2017, 143, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Lereboullet, A.L.; Beltrando, G.; Bardsley, D.K.; Rouvellac, E. The viticultural system and climate change: Coping with long-term trends in temperature and rainfall in Roussillon, France. Reg. Environ. Chang. 2014, 14, 1951–1966. [Google Scholar] [CrossRef]
- Dunn, M.; Rounsevell, M.D.A.; Boberg, F.; Clarke, E.; Christensen, J.; Madsen, M.S. The future potential for wine production in Scotland under high-end climate change. Reg. Environ. Chang. 2019, 19, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, M.; Ramos, A.M.; Brands, S. Present and future climate conditions for winegrowing in Spain. Reg. Environ. Chang. 2016, 16, 617–627. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
Environment Variables | Abbreviation | Resolution | Units |
---|---|---|---|
Average atmospheric temperature in January | TEM01 | 10 km | °C |
Average atmospheric temperature in April | TEM0409 | 10 km | °C |
Average atmospheric temperature from May to June | TEM0506 | 10 km | °C |
Average atmospheric temperature from July to August | TEM0708 | 10 km | °C |
Average atmospheric temperature in September | TEM09 | 10 km | °C |
Average surface temperature in January | LST01 | 1 km | °C |
Average surface temperature from April to September | LST0409 | 1 km | °C |
Average surface temperature from May to June | LST0506 | 1 km | °C |
Average surface temperature from July to August | LST0708 | 1 km | °C |
Average surface temperature from July to September | LST0709 | 1 km | °C |
NDVI from April to September | NDVI0409 | 1 km | |
NDVI from May to June | NDVI0506 | 1 km | |
NDVI from July to August | NDVI0708 | 1 km | |
NDVI from July to September | NDVI0709 | 1 km | |
NDVI in September | NDVI09 | 1 km | |
Dryness from July to September | K0709 | 10 km | |
Dryness from April to September | K0409 | 10 km | |
Total precipitation from April to September | P0409 | 5 km | mm |
Total precipitation from May to June | P0506 | 5 km | mm |
Total precipitation from July to August | P0708 | 5 km | mm |
Total precipitation from July to September | P0709 | 5 km | mm |
Total precipitation in September | P09 | 5 km | mm |
Soil organic carbon | SOC | 250 m | g/kg |
Soil pH | pH | 250 m | |
Soil texture | ST | 250 m | |
Altitude | DEM | 30 m | m |
Aspect | AS | 30 m | |
Slope | SL | 30 m | degree |
Group | Environment Variable Combination |
---|---|
G1 | TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0708 |
G2 | TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0708 |
G3 | TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0708 |
G4 | TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0709 |
G5 | TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0708 |
G6 | TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0709 |
G7 | TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0708 |
G8 | TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0709 |
G9 | TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0708 |
G10 | TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0709 |
Environment Variable Combination | Training AUC | Test AUC | Training TSS | Test TSS |
---|---|---|---|---|
G1 | 0.982 | 0.974 | 0.875 | 0.872 |
G2 | 0.982 | 0.978 | 0.871 | 0.881 |
G3 | 0.983 | 0.975 | 0.868 | 0.858 |
G4 | 0.983 | 0.977 | 0.855 | 0.860 |
G5 | 0.982 | 0.973 | 0.854 | 0.859 |
G6 | 0.983 | 0.970 | 0.871 | 0.873 |
G7 | 0.983 | 0.978 | 0.820 | 0.872 |
G8 | 0.984 | 0.976 | 0.869 | 0.858 |
G9 | 0.984 | 0.978 | 0.855 | 0.864 |
G10 | 0.984 | 0.979 | 0.857 | 0.864 |
All (28 environment variables) | 0.980 | 0.978 | 0.801 | 0.800 |
Six (6 dominant environment variables) | 0.972 | 0.970 | 0.880 | 0.886 |
Climate Scenarios | Periods | Highly Suitable Areas (km2) | Moderately Suitable Areas (km2) | Lowly Suitable Areas (km2) |
---|---|---|---|---|
SSP126 | Long-term sustainability (current–2060) | 386 | 1305 | 6824 |
Short-term sustainability (current–2040) | 400 | 1408 | 7018 | |
Future sustainability (2022–2060) | 589 | 1462 | 7821 | |
Far sustainability (2041–2060) | 682 | 1508 | 9044 | |
SSP245 | Long-term sustainability (current–2060) | 334 | 1436 | 6889 |
Short-term sustainability (current–2040) | 374 | 1523 | 7151 | |
Future sustainability (2022–2060) | 529 | 1562 | 7746 | |
Far sustainability (2041–2060) | 673 | 1646 | 8263 | |
SSP370 | Long-term sustainability (current–2060) | 379 | 1339 | 6798 |
Short-term sustainability (current–2040) | 391 | 1434 | 7020 | |
Future sustainability (2022–2060) | 591 | 1459 | 7819 | |
Far sustainability (2041–2060) | 643 | 1574 | 8070 | |
SSP585 | Long-term sustainability (current–2060) | 371 | 1363 | 7085 |
Short-term sustainability (current–2040) | 392 | 1496 | 7295 | |
Future sustainability (2022–2060) | 618 | 1492 | 8444 | |
Far sustainability (2041–2060) | 708 | 1528 | 8745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, H.; Sun, Z.; Yao, X.; Kong, J.; Wang, Y.; Zhang, X.; Chen, W.; Fan, P.; Li, S.; Liang, Z.; et al. Viticultural Suitability Analysis Based on Multi-Source Data Highlights Climate-Change-Induced Decrease in Potential Suitable Areas: A Case Analysis in Ningxia, China. Remote Sens. 2022, 14, 3717. https://doi.org/10.3390/rs14153717
Bai H, Sun Z, Yao X, Kong J, Wang Y, Zhang X, Chen W, Fan P, Li S, Liang Z, et al. Viticultural Suitability Analysis Based on Multi-Source Data Highlights Climate-Change-Induced Decrease in Potential Suitable Areas: A Case Analysis in Ningxia, China. Remote Sensing. 2022; 14(15):3717. https://doi.org/10.3390/rs14153717
Chicago/Turabian StyleBai, Huiqing, Zhongxiang Sun, Xuenan Yao, Junhua Kong, Yongjian Wang, Xiaoyu Zhang, Weiping Chen, Peige Fan, Shaohua Li, Zhenchang Liang, and et al. 2022. "Viticultural Suitability Analysis Based on Multi-Source Data Highlights Climate-Change-Induced Decrease in Potential Suitable Areas: A Case Analysis in Ningxia, China" Remote Sensing 14, no. 15: 3717. https://doi.org/10.3390/rs14153717
APA StyleBai, H., Sun, Z., Yao, X., Kong, J., Wang, Y., Zhang, X., Chen, W., Fan, P., Li, S., Liang, Z., & Dai, Z. (2022). Viticultural Suitability Analysis Based on Multi-Source Data Highlights Climate-Change-Induced Decrease in Potential Suitable Areas: A Case Analysis in Ningxia, China. Remote Sensing, 14(15), 3717. https://doi.org/10.3390/rs14153717