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Abstract: As a perennial plant with long productive span of 30–50 years, grapevine may experience
cross-lifespan climate change, which can modify wine quality and challenge viticultural sustainability.
Therefore, it is essential to evaluate the viticultural suitability by considering both current and future
climate conditions. To this end, a maximum entropy model was proposed to delimitate potentially
suitable areas for viticulture based on multi-source data in a novel wine region, Ningxia, China,
considering both current and future climate conditions. Firstly, we combined traditional data of
climate, soil, and topography with remote sensing data to screen predictors that best characterize
current geographical distribution of vineyards. Then, we used those predictors to assess current suit-
ability (2001–2020) in Ningxia. The results indicated altitude, aridity index during April–September
(K0409), precipitation during July–September (P0709), normalized difference vegetation index during
July–September (NDVI0709), soil organic carbon (SOC), and precipitation in September (P09) were
key predictors to assess potential suitability for viticulture, and their threshold values ranged from
1075 m to 1648 m, 2.93 to 4.83, 103.1 mm to 164.1 mm, 0.1 to 0.89, 0.07 g/kg to 11 g/kg and 28.4 mm
to 45.0 mm, respectively. Suitability maps revealed a total suitable area of 12029 km2, among which
the highly and moderately suitable areas accounted for 6.1% and 23.1%, respectively. Finally, the
alteration in proportion of potential suitable areas due to changing climate was estimated. The
potential suitable areas varied from 8742 km2 to 10623 km2 over the next 40 years (2022–2060) and
decreased to 8826–9184 km2 under a short-term sustainability (suitable only during current–2040).
To further consider long-term and sustainable development of the wine industry (current–2060),
total suitable areas dropped by 26.7–29.2% under different climate scenarios compared with current
suitable areas (2001–2020). The conclusions provide indispensable guidance for vineyard zoning
considering long-term climate change.

Keywords: grape; MaxEnt model; environment variables; suitability; climate change; remote
sensing data
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1. Introduction

The wine industry is known with huge market potential and high added value, and,
therefore, is of importance in regional economic development [1]. At present, the wine
industry has encountered a series of impacts from changing climate worldwide, which
not only challenges sustainability of the wine industry in existing wine regions, but also
opens opportunities for new regions [2–7]. To develop a sustainable wine industry in a
novel region, identifying suitable viticulture zones is the critical step, because grapevine is
a perennial plant with a long productive span of 30–50 years and may experience cross-
lifespan climate change. Therefore, it is essential to evaluate the suitability of a viticulture
zone considering both current and future climates, ensure a constant production of high-
quality grapes and wines, and maintain a sustainable development of the wine industry.

Grape and wine quality is mainly determined by the “terroir”, which is made up of
a series of factors, including climate, soil, cultivar, cultivation management, oenological
techniques, cultural conventions, etc. [8,9]. Climate is the major factor influencing quantity
and quality of grape and wine, such as yield, composition, aroma, and berry color [10].
Variable temperature regimes are necessary for each stage of grape growth [11]. For
example, budbreak of grapevine requires a prolonged temperature above 10 ◦C, while
the suitable temperature is over 15 ◦C during flowering [12,13]. Since temperature is
the most critical factor [14], various bioclimatic indices have been proposed to explore
climate suitability in order to mitigate the impacts of climate change, such as Winkler index
(WI) [11] and growing season temperature (GST) [15]. Some researchers have applied
these bioclimatic indices to classify viticultural suitability under current and future climate
conditions across the world [16–21]. Moreover, multi-criteria climatic indices combining
temperature and radiation factors have been proposed for viticulture zoning [22]. In
addition, precipitation-related indicators have been used to categorize wine regions as
well [23,24]. In particular, combining multiple indices for a better assessment of climatic
suitability is crucial [5,10]. Overall, the above-mentioned studies indicate the suitability
of wine regions has changed due to changing climate. In addition to climate factors,
soil attributes are also essential for assessing viticultural suitability [25]. Soil provides
nutrients and plentiful mineral elements for vines, affecting the composition of grape berries
and wine characteristics (e.g., potassium concentrations and titratable acidity) [26,27].
Recently, soil variables combining traditional climate indices have been used to select
the best predictors characterizing the vineyards to assess suitable areas in Spain, and
the results confirmed that the compensated thermicity index and continentality index, as
well as soil pH, clay content, capacity, and saturation humidity, are key factors impacting
geographical distribution for all the cultivars studied [28]. Additionally, topography, such
as altitude, aspect, and slope, indirectly affect grape growth through changing climate and
soil conditions [13,29] and should be considered as a supplement to ecological suitability
assessment of vineyards as well.

Previous research has evaluated viticultural suitability worldwide using different
methodologies. One approach is to evaluate the ecological suitability based on selected
environment indicators related to growth and development of grapevine [30–34]. The other
approach is to establish a species distribution model combining the actual plantation of
grapevine with its habitat variables [3,5,28,35,36], and the latter is more objective compared
with the first, minimizing differences caused by diverse research scales [36]. As one of the
commonly used species distribution models, the maximum entropy model (MaxEnt) based
on the principle of maximum entropy [37] has low requirement on the quantity of existing
sites and high prediction accuracy [38,39] and is widely used to predict potential suitable
areas of species. However, only a few studies assessed the climatic [5,36,40] and ecological
suitability [28,35] of wine grape based on MaxEnt model worldwide, mainly considering
climate and soil factors. The remote sensing data has high precision in large-scale and long
time series. Obviously, it is of great value to integrate remote sensing data with climate,
soil, and topography data to more precisely estimate the ecological suitability in order to
harvest high-quality grapes and produce premium wines.
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As the sixth wine consumer in the world, China possesses huge potential in the wine
industry [41]. Ningxia is the largest continuous wine grape plantation region, with the
area of 380 km2 by the end of 2019, accounting for 1/4 of the wine regions in China [42].
However, changing temperature continuously impacts wine production in China; for
instance, the high-quality wine regions may decrease while warming temperature is fa-
vorable for planting late-maturing cultivars [43]. Therefore, it is of great significance to
establish viticultural suitability with consideration of long-term sustainability. Currently,
few studies on climatic [36] and ecological suitability [35] have been explored by using
MaxEnt model in the wine regions of China under current climate conditions, mainly
applying climate, soil, and topography data, let alone assessing the change in suitability
under future climate. Meanwhile, MaxEnt model is currently the best ecological model
for predicting the species distribution, and its prediction covers a larger area than other
models, which is more consistent with actual occurrence data [44,45]. Since grapevine is a
perennial plant with outstanding longevity, assessing ecological suitability of wine grape
by integrating multi-source data is valuable to obtain high-precision results under both
current and future climates.

Thus, this study, in a case study of Ningxia region of China, based on the geographical
distribution of the vineyards collected, aimed to (i) apply MaxEnt model with multi-
source data to accurately evaluate potential suitable areas of wine grape in Ningxia; (ii)
explore threshold values of key environment variables affecting distribution of wine grape
under the current climate; and (iii) highlight the potential suitable areas of wine grape by
simultaneously considering both current and future climates in Ningxia.

2. Materials and Methods
2.1. Study Region and Vineyard Occurrence Record

Ningxia is a young wine region in China and the wine industry started about 30 years
ago. Ningxia has typical continental climate and is located in the middle and upper Yellow
River of northwest China, ranging from 35◦14′ to 39◦23′N and from 104◦17′ to 107◦39′E.
The total annual sunshine hours are above 2000 h. The average temperature and total
precipitation for grape growing season range from 12 ◦C to 21 ◦C and 160 mm to 400 mm.
The diurnal temperature range of grape growing season is generally over 10 ◦C, fulfilling
the requirements of high-quality grape production [46,47]. There are various topographies,
including hill, plain, mountain, and tableland. The soil type is diverse, such as dark
loessial soils, cultivated loessial soils, alluvial soils, grey-cinnamon soils, aeolian sandy
soils, cumulated irrigated soils, etc. At present, a few white cultivars (Chardonnay, Riesling,
and Vidal Blanc) and red cultivars (Cabernet Sauvignon, Cabernet Gernischet, Merlot,
Cabernet Franc, Marselan, and Petit Verdot) are planted in Ningxia.

The geographic distribution data of 107 vineyards were collected in this study, stem-
ming from National Geographic Information System for Grape Industry, related litera-
ture [48], and field survey. Data were supplemented and verified in combination with
satellite map and GPS orientation (Figure 1). Finally, the information of planting sites, as
well as corresponding longitude and latitude, were stored in CSV format.
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Figure 1. Study region and actual vineyard distribution in Ningxia (DEM = altitude).

2.2. Data Sources and Environment Variables

Environment variables were made up of four types of data in this research, including
climate, soil, topography, and remote sensing. In terms of climate factors, air temperature
derived from a reanalysis dataset named ERA5-Land [49] and precipitation applied an over
30-year quasi-global rainfall dataset named Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) [50]. These datasets were updated to present. The remote
sensing data, such as land surface temperatures (LST) and normalized difference vegetation
index (NDVI), stemmed from MODIS MOD11A2 V6 (https://lpdaac.usgs.gov/products/
mod11a2v006/, accessed on 10 September 2021) and MOD13A2 V6 (https://lpdaac.usgs.
gov/products/mod13a2v006/, accessed on 10 September 2021) products. Overall, climate
and remote sensing data during 2001–2020 were downloaded from Google Earth Engine
(https://earthengine.google.com/, accessed on 10 September 2021). Soil organic carbon
is an extremely important component of soil and is closely related to soil fertility. The
sand, silt, and clay contents were applied in the previous related research [28,35]; hence,
soil texture, as the comprehensive factor of sand, silt, and clay contents, was chosen here.
Furthermore, due to irrigation and fertilization in the wine region of Ningxia, soil retention
capacity and soil nutrients (e.g., nitrogen, phosphorus and potassium) were not considered.
Ultimately, soil organic carbon (0–5 cm), pH (0–5 cm), and texture (0–5 cm) were chosen
and downloaded from SoilGrids (https://www.soilgrids.org/, accessed on 10 September
2021). In addition, altitude, namely DEM, was derived from the ASTER GDEM V3 data,
and slope and aspect were calculated by altitude.

To discriminate effects of climate factors during different grape growth stages, grape
growth was divided into four phenological stages from April to September in Ningxia,
i.e., budburst (April), flowering (May and June), veraison (July and August), and maturity

https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://earthengine.google.com/
https://www.soilgrids.org/
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(September). The habitat factors of the four stages were calculated accordingly. In addition,
the average temperature in January, as a vital climatic index, was added to represent the
dormant period of grapevine [13]. Since the solar radiation during grape growing season
is not a limiting factor in Ningxia, it was unconsidered [46]. Furthermore, the aridity
index (K) was applied instead of dryness index (DI), calculated by crop coefficient due
to indistinct values of crop coefficient in different subregions of Ningxia [46]. Ultimately,
28 environment variables were applied to develop the MaxEnt model and assess potential
suitable areas for wine grape in Ningxia (Table 1). It is noteworthy that the downloaded
28 environment variables in TIF format were converted to ASCII format by ArcGIS and
kept at the same resolution (1 km × 1 km) as LST and NDVI.

Table 1. Definition of environment variables.

Environment Variables Abbreviation Resolution Units

Average atmospheric temperature in January TEM01 10 km ◦C
Average atmospheric temperature in April TEM0409 10 km ◦C

Average atmospheric temperature from May to June TEM0506 10 km ◦C
Average atmospheric temperature from July to August TEM0708 10 km ◦C

Average atmospheric temperature in September TEM09 10 km ◦C
Average surface temperature in January LST01 1 km ◦C

Average surface temperature from April to September LST0409 1 km ◦C
Average surface temperature from May to June LST0506 1 km ◦C

Average surface temperature from July to August LST0708 1 km ◦C
Average surface temperature from July to September LST0709 1 km ◦C

NDVI from April to September NDVI0409 1 km
NDVI from May to June NDVI0506 1 km

NDVI from July to August NDVI0708 1 km
NDVI from July to September NDVI0709 1 km

NDVI in September NDVI09 1 km
Dryness from July to September K0709 10 km

Dryness from April to September K0409 10 km
Total precipitation from April to September P0409 5 km mm

Total precipitation from May to June P0506 5 km mm
Total precipitation from July to August P0708 5 km mm

Total precipitation from July to September P0709 5 km mm
Total precipitation in September P09 5 km mm

Soil organic carbon SOC 250 m g/kg
Soil pH pH 250 m

Soil texture ST 250 m
Altitude DEM 30 m m
Aspect AS 30 m
Slope SL 30 m degree

2.3. MaxEnt Setting and Modeling

MaxEnt is based on the principle of maximum entropy by using a machine-learning
algorithm to predict potential suitability of species from presence-only data and habitat
factors [35]. MaxEnt performs well in modeling species niches, even though there are
limited occurrence data [51]. Here, MaxEnt version 3.4.1 downloaded from the American
Museum of Natural History (biodiversityinformatics.amnh.org/open_source/maxent, ac-
cessed on 1 September 2021) was applied to assess potential suitable areas of wine grape in
Ningxia. Seventy-five percent of sample data were randomly selected as a training set for
prediction, while the remaining 25% of records were used as a test set to verify accuracy of
this model [52]. In order to reduce randomness of the model and uncertainty of simulated
results, the model was run repeatedly for 10 replicates [53]. The number of iterations and
convergence threshold were set to 5000 and 10−5, which allows the model to have adequate
time for convergence. Finally, the training would stop if the log loss per iteration dropped
below them [37]. The output format chosen was logistic, which represented the probability
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of existence (ranging between 0 and 1) [54]. All other parameters were set to their default
values. Additionally, the jackknife test was selected to determine dominant variables that
affected the distribution of wine grape.

To evaluate the accuracy of simulated results by MaxEnt model, the training areas
under the receiver operating characteristic (ROC) curve, namely AUC, was applied. AUC
is a threshold independent measure of model performance, ranging from 0 to 1 [55]. The
overall accuracy of the developed model was divided into excellent (AUC > 0.9), good
(0.8 < AUC ≤ 0.9), fair (0.7 < AUC ≤ 0.8), poor (0.6 < AUC ≤ 0.7), and fail (AUC ≤ 0.6) [56].
The true skill statistic (TSS) with the formula of “sensitivity + specificity − 1” was applied
to validate the performance of MaxEnt model as well, ranging from −1 to 1. Moreover,
the closer the value was to 1, the better the model performed [57]. Based on previous
studies, grape suitability was divided into highly suitable areas (p ≥ 0.66), moderately
suitable areas (0.33 ≤ p < 0.66), lowly suitable areas (0.05 ≤ p < 0.33), and unsuitable areas
(p < 0.05) [36,58].

2.4. Future Climate Scenarios

Future temperature and precipitation data were derived from Coupled Model Inter-
comparison Phase 6 (CMIP6) and downloaded from the WorldClim global climate dataset
on a 2.5 arc-minute grid (https://worldclim.org/, accessed on 8 November 2021). Here,
we selected a global climate model (GCM) named BCC-CSM2-MR from National Climate
Center of China and four Shared Socio-Economic Pathways (SSPs: SSP126, SSP245, SSP370,
and SSP585) to assess the suitability of wine grape in Ningxia for the periods of 2022–2040
and 2041–2060. Thereinto, SSP126, as the lowest radiation emission scenario, has a radiative
forcing of 2.6 W m−2 with global warming below 2 ◦C until 2100. SSP245 and SSP370
are under a radiative forcing of 4.5 W m−2 and 7.0 W m−2, and SSP585 represents the
highest radiation emission scenario, with a radiative forcing of 8.5 W m−2 [59–61]. Firstly,
the monthly average minimum, maximum temperature, and monthly total precipitation
(12 bands from January to December in each variable) were downloaded under four
scenarios for the periods of 2022–2040 and 2041–2060 in Ningxia. Then, the K0409 and P0709
during 2022–2060 were calculated by average temperature and total precipitation of April–
September, as well as total precipitation during July–September by merging multi-band of
ArcGIS software. Finally, since NDVI0709 under future climate conditions is not available,
K0409, P09, and P0709 during 2022–2060 combined with DEM, SOC, and NDVI0709 across
2001–2020 were used to assess the viticultural suitability in order to analyze the change in
areas caused by only changing climate (temperature and precipitation) (Figure 2).

2.5. Data Analysis

The environment variables of the same category may be correlated with each other,
reducing predicted accuracy of the model [61]. The “Corrplot” package in R was used to
analyze the correlation of selected environment variables in R 3.4.4 (developed by R Core
Team and downloaded from Vienna, Austria) [62]. The threshold value for the Pearson
correlation coefficient was set as 0.9, and environment variables with high correlation were
divided into different combinations to minimize autocorrelation. Firstly, we used 28 en-
vironment variables to develop MaxEnt model and determined the percent contribution
and permutation importance of each variable. The results showed that the percent contri-
bution of DEM and K0409 were high and the percent contribution of TEM0709, TEM0409,
NDVI0409, NDVI0709, LST0409, and LST0709 were low. Therefore, we deleted P0409,
P0708, and K0709 (high correlation with DEM and K0409), as well as TEM0709, TEM0409,
NDVI0409, NDVI0506, LST0409, and LST0709 (low percent contribution). Secondly, due
to the high correlation among TEM0708, TEM0506, NDVI0709, NDVI0708, LST0708, and
LST0506, we separated those highly correlated variables and combined them with TEM01,
LST01, K0409, SL, AS, DEM, ST, pH, SOC, P09, P0506, and P0709. Finally, 10 combinations
of environment variables were set (Table 2), and the dominant variables used for modeling
were chosen from the optimal combination.

https://worldclim.org/
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Table 2. Ten combinations of environment variables.

Group Environment Variable Combination

G1 TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0708
G2 TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0708
G3 TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0708
G4 TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0709
G5 TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0708
G6 TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, NDVI0709
G7 TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0708
G8 TEM01, TEM0506, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0709
G9 TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0708
G10 TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC, DEM, SL, AS, LST01, LST0506, NDVI0709

In addition, the percent contribution represents the contribution of environment vari-
ables in the MaxEnt model. The higher the percent contribution is, the greater the contribu-
tion of the environment variable. The permutation importance represents the dependence
of model on environment variables. The higher the permutation importance is, the greater
the dependence [54]. Generally, the optimal combination and the key variables from the
optimal combination were selected and the threshold of percent contribution was set as 5%.

3. Results
3.1. Accuracy of Maxent Model

The AUC values of training and test datasets were both over 0.9 for 10 combinations
(Table 3). Among them, G10 (TEM01, TEM0708, P0506, P09, P0709, K0409, ST, pH, SOC,
DEM, SL, AS, LST01, LST0506, and NDVI0709) performed the highest AUC values, with 0.984
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and 0.979, respectively (Table 3). Moreover, the correlation coefficient for each environment
variable of G10 was lower than 0.9, minimizing autocorrelation impacts on MaxEnt model
accuracy (Figure 3). All the TSS values were over 0.80, indicating that the performance of
each model was good. Overall, the simulated results were highly accurate, indicating that
the model could be used to predict the potential suitability of wine grape in Ningxia.

Table 3. The areas under the receiver operating characteristic curve (AUC) and true skill statistic
(TSS) values of MaxEnt model under 12 combinations of environment variables.

Environment Variable Combination Training AUC Test AUC Training TSS Test TSS

G1 0.982 0.974 0.875 0.872
G2 0.982 0.978 0.871 0.881
G3 0.983 0.975 0.868 0.858
G4 0.983 0.977 0.855 0.860
G5 0.982 0.973 0.854 0.859
G6 0.983 0.970 0.871 0.873
G7 0.983 0.978 0.820 0.872
G8 0.984 0.976 0.869 0.858
G9 0.984 0.978 0.855 0.864

G10 0.984 0.979 0.857 0.864
All (28 environment variables) 0.980 0.978 0.801 0.800

Six (6 dominant environment variables) 0.972 0.970 0.880 0.886
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Figure 3. The correlation of each environment variable for optimal combination. Note: TEM01
and TEM0708 represent air temperature in January and from July to August. LST0506 and LST01
represent land surface temperature from May to June and in January. DEM, AS, and SL represent
altitude, aspect, and slope. K0409 represents aridity index from April to September. P0709 and P09
represent total precipitation from July to September and in September. ST and SOC represent soil
texture and soil organic carbon. NDVI0709 represents NDVI from July to September.
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3.2. Dominant Environment Variables Impacting Wine Grape Distribution

Based on the analysis of percent contribution, the contributions of DEM, K0409,
P0709, NDVI0709, SOC, and P09 were all over 5% (Figure 4a). DEM possessed the highest
percent contribution, with the value of 32%. In terms of climate variables, the percent
contributions of K0409, P0709, and P09 were 22.5%, 7.8%, and 6.4%, respectively. For
remote sensing and soil variables, the percent contributions of NDVI and SOC were 7.4%
and 6.5%, respectively. Additionally, permutation importance represented the importance
of an individual variable in the model, and the permutation importance of P0709, DEM,
and P0506 were above 20%, as detailed in Figure 3a. However, the percent contribution of
P0506 was 1%, even with higher permutation importance. Irrigation is indispensable due to
insufficient precipitation from May to June [47]; thus, the P0506 was unconsidered as a key
factor affecting vineyard distribution. The results from jackknife test showed the similar
performance with percent contribution (Figure 4b). DEM and K0409 had the maximum
AUC value when they were used in isolation, highlighting their importance in determining
model accuracy. Additionally, the AUC values of P09, P0709, SOC, and NDVI0709 were
above 0.6. Eventually, the DEM, K0409, P0709, NDVI0709, SOC, and P09 were selected to
assess potential suitable areas for wine grape in Ningxia. The mean AUC value of MaxEnt
model based on six variables was 0.971, which demonstrated that this model has excellent
predictive ability to describe the distribution of wine grape in Ningxia.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. The percent contribution and permutation importance of each environment variable (a) 
and AUC values of each environment variable from the jackknife test (b). “With all variables” rep-
resents the AUC of the model using all variables, “With only variable” represents the AUC of the 
model using only one variable, and “Without variable” represents the AUC of the model using all 
except one variable. 

3.3. Threshold Values of Six Dominant Environment Variables 
In order to profoundly understand the relationships between distribution of wine 

grape and environment variables, the thresholds of six main variables were calculated. 
The values for DEM indicated that wine grapes are suitable for low and middle altitude, 
ranging from 1075 m to 1648 m in Ningxia (Figure 5a). In terms of climate variables, the 
thresholds of K0409, P09, and P0709 in the whole suitable areas (p > 0.05) were from 2.93 
to 4.83, 28.4 mm to 45.0 mm, and 103.1 mm to 164.1 mm, respectively (Figure 5b–d). 
NDVI0709 represented the average vigor of plant growth from July to September; its 
threshold ranged from 0.1 to 0.89 (Figure 5e). The threshold of SOC ranged from 0.07 g/kg 
to 11 g/kg, which suggested large differences in terroir among different sub-regions in 
Ningxia (Figure 5f). 

Figure 4. The percent contribution and permutation importance of each environment variable (a) and
AUC values of each environment variable from the jackknife test (b). “With all variables” represents
the AUC of the model using all variables, “With only variable” represents the AUC of the model
using only one variable, and “Without variable” represents the AUC of the model using all except
one variable.

3.3. Threshold Values of Six Dominant Environment Variables

In order to profoundly understand the relationships between distribution of wine
grape and environment variables, the thresholds of six main variables were calculated.
The values for DEM indicated that wine grapes are suitable for low and middle altitude,
ranging from 1075 m to 1648 m in Ningxia (Figure 5a). In terms of climate variables, the
thresholds of K0409, P09, and P0709 in the whole suitable areas (p > 0.05) were from 2.93 to
4.83, 28.4 mm to 45.0 mm, and 103.1 mm to 164.1 mm, respectively (Figure 5b–d). NDVI0709
represented the average vigor of plant growth from July to September; its threshold ranged
from 0.1 to 0.89 (Figure 5e). The threshold of SOC ranged from 0.07 g/kg to 11 g/kg, which
suggested large differences in terroir among different sub-regions in Ningxia (Figure 5f).
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Figure 5. Response curves of dominant environment variables (DEM (a), K0409 (b), P09 (c), P0709 (d),
NDVI0709 (e), SOC (f)) in the MaxEnt model. Note: response curves showed the relationships
between existence probability of wine grape and six environment variables. Blue line represents the
standard deviation (SD) of 10 replicates and red line represents mean value. DEM represents altitude.
K0409 represents aridity index from April to September. NDVI0709 represents NDVI from July to
September. P0709 and P09 represent total precipitation from July to September and in September.
SOC represents soil organic carbon.

3.4. Potential Suitable Areas for Wine Grape under Current Climate Condition

Predicted results based on six dominant environment variables fitted well to the
known wine regions in Ningxia under the current climate (Figure 6). The total suitable
areas were 12,029 km2, which accounted for 18.1% of the whole areas of Ningxia, and
highly and moderately suitable areas accounted for 6.1% and 23.1% among the total
suitable areas, respectively. The potential suitable areas were distributed in the north of
Ningxia. Thereinto, highly suitable areas were mainly distributed in Xixia, Qingtongxia,
Helan, and Yongning, a small amount in Xingqing, Lingwu, and Jinfeng, and scattered
throughout in Pingluo, Dawukou, and Litong. The values of DEM, K0409, P09, and P0709
were below 1100 m, 4.1–4.2, below 35 mm, and below 120 mm, respectively, in highly
suitable areas. Moderately suitable areas were mainly distributed in Qingtongxia, Helan,
Yongning, Lingwu, Dawukou, Xingqing, Jinfeng, Xixia, and Litong, a small amount in
Huinong and Pingluo, and scattered throughout in Shapotou and Zhongning. The values
of DEM, K0409, P09, and P0709 were 1100–1200 m, above 3.9, below 40 mm, and below
130 mm, respectively, in moderately suitable areas. The distribution of low suitability was
similar with both high and moderate suitability and distributed in Hongsipu, Yanchi, and
Tongxin as well (Figure 6).
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3.5. Potential Suitable Areas for Wine Grape in Long-Term Climate Change

The simulations of potential suitable areas during 2001–2060 are encapsulated in
Figure 7 and Table 4. The potential suitable areas ranged from 8826 km2 to 9184 km2

under a short-term sustainability (suitable only from the current period to 2040) and
decreased by 23.7–26.6% compared with the current potential suitable areas (2001–2020).
If only considering future climate, the potential suitable areas varied from 8742 km2 to
10,623 km2 over the next 38 years (2022–2060) and declined by 11.7–27.3% compared with
the current potential suitable areas (2001–2020). Significantly, to further consider long-term
and sustainable development of the wine industry (current–2060), total potential suitable
areas dropped by 26.7–29.2% under four climate scenarios compared with the current
potential suitable areas (2001–2020). Overall, potential suitable areas with short-term
sustainability (current–2040) shifted to west under low emission scenarios (SSP126 and
SSP245), while those areas shifted to west and north under high emission scenarios (SSP370
and SSP585). For a far sustainability (2041–2060), potential suitable areas shifted to west
and east under four emission scenarios. In addition, highly, moderately, and lowly suitable
areas decreased 22–296 km2, 1128–1369 km2, and −519–1727 km2 among four emission
scenarios of four periods (current–2060, current–2040, 2022–2060, and 2041–2060).
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Table 4. The potential suitable areas for wine grape during four periods under four emission scenarios
in Ningxia.

Climate
Scenarios Periods Highly Suitable

Areas (km2)
Moderately Suitable

Areas (km2)
Lowly Suitable

Areas (km2)

SSP126

Long-term sustainability (current–2060) 386 1305 6824
Short-term sustainability (current–2040) 400 1408 7018

Future sustainability (2022–2060) 589 1462 7821
Far sustainability (2041–2060) 682 1508 9044

SSP245

Long-term sustainability (current–2060) 334 1436 6889
Short-term sustainability (current–2040) 374 1523 7151

Future sustainability (2022–2060) 529 1562 7746
Far sustainability (2041–2060) 673 1646 8263
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Table 4. Cont.

Climate
Scenarios Periods Highly Suitable

Areas (km2)
Moderately Suitable

Areas (km2)
Lowly Suitable

Areas (km2)

SSP370

Long-term sustainability (current–2060) 379 1339 6798
Short-term sustainability (current–2040) 391 1434 7020

Future sustainability (2022–2060) 591 1459 7819
Far sustainability (2041–2060) 643 1574 8070

SSP585

Long-term sustainability (current–2060) 371 1363 7085
Short-term sustainability (current–2040) 392 1496 7295

Future sustainability (2022–2060) 618 1492 8444
Far sustainability (2041–2060) 708 1528 8745

4. Discussion

Climate change massively affects potential suitability of viticulture; identifying poten-
tial suitable areas of wine grapes can provide a tangible upper limit for improving grape
and wine quality to develop the wine industry [3,5]. Here, our results provided a full
representation of the viticultural potential by developing an optimal MaxEnt model based
on both occurrence data of wine grape and dominant environment variables under current
and future climates in Ningxia, China.

Although several environment variables were chosen to assess the ecological suitability
of wine grape, selected variables were mainly climatic factors [5,34,40], followed by soil and
topography [28,33]. In this study, we combined the data of climate, soil, and topography and
remote sensing data (NDVI and LST) and divided phenological stages of grapevines into
four periods to precisely estimate potential suitable areas. The final results demonstrated
that selected variables with high contribution were DEM, K0409, P0709, NDVI0709, SOC,
and P09. Previous research has also indicated that altitude is a crucial habitat factor
impacting suitability of grapevine [5,35]. Our result not only established the importance
of DEM, but also quantified the threshold values of potential suitable areas, ranging from
1075 to 1648 m in Ningxia. As an indicator of dryness and humidity in some areas, K0409
has been used to explore climatic and ecological suitability of wine grape [36,46]. K0409
possesses 22.5% model contribution, and its threshold values of suitable areas varies from
2.93 to 4.83 in this study. It is well known that a moderate water stress is actually desirable,
because water deficits to a moderate level can improve fruit composition and advance
ripening [63]. Jiang et al. [64] suggested that precipitation should not exceed 50 mm during
harvest in order to obtain high-quality grape. Similarly, our results highlighted that the
threshold values of P09 and P0709 range from 28.4 mm to 45.0 mm and 103.1 mm to
164.1 mm in potential suitable areas of Ningxia. In addition, we quantified the threshold
value of SOC ranging from 0.07 g/kg to 11 g/kg in potential suitable areas as well. Soil
organic carbon (SOC) reflects the ability of sequestration of carbon, directly affecting the
maintenance and improvement of soil fertility and, thus, is often recognized as an important
index to evaluate soil fertility [65]. Cheng et al. [66] demonstrated differences in grape
composition associated with soil water and organic carbon. Finally, NDVI is considered
as another variable impacting the distribution of wine grape here. The threshold value of
NDVI0709 ranged from 0.21 to 0.37 under higher potential suitable areas, which is helpful
for monitoring wine regions by remote sensing technology. Overall, our conclusions not
only highlighted the key climate variables, but also provide topography, soil, and remote
sensing variables that affect grapevine distribution in Ningxia, China.

Subsequently, this research also revealed the total suitable areas with the value of
12,029 km2; thereinto, highly suitable areas were 734 km2 and mainly distributed in Xixia
District, Qingtongxia City, Helan, and Yongning Counties. Some suitable regions are con-
sistent with current plantation in Ningxia [67]. The results provided support to develop
new planting areas, which are potentially suitable but are not planted currently. Although
previous studies mainly estimated potential suitable areas combining the MaxEnt model
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with climate and soil variables in different wine regions of world [5,28,33,34], we applied
traditional variables of climate, soil, and topography, as well as remote-sensing-related in-
dices and divided climate and remote sensing data into four periods based on phenological
stages to accurately confirm which phenological period mainly affects the distribution of
wine grape. Since grapevines possess a long life span of 30–50 years, it is not sufficient
to explore currently potential suitable areas of wine grapes under continuously changing
climate. Previous research has claimed that some cool wine regions, such as the UK [68]
and Canada [69], may benefit from global warming by becoming suitable areas for wine
grape. Conversely, Roussillon in France [70] and Romania [31] may become too hot to
continuously produce high-quality wines. Therefore, we assessed potential suitable areas
of wine grape in the coming decades as well. Our predictions identified that total suitable
areas reduced in the future compared to a baseline of 2001–2020. The decrease is caused
by decreased P09 and K0409, as well as increased P0709 during 2022–2060 compared with
the current climate (Figure 8). In other countries, the future climate will be beneficial
for wine production in Scotland under high-end climate change [71], whereas there will
be a negative influence in the wine regions of central and southern Spain under future
climate [72]. In the whole of Europe, the suitable areas for wine grape will slightly decline
for 2050 as well [5]. Overall, climate change brings both opportunities and challenges for
the wine industry. In Ningxia, China, the potential suitable areas declined under global
warming conditions when considering the long-term sustainability (current–2060).
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Figure 8. P09, P0709, and K0409 in Ningxia under current (2001–2020) and future (SSP126, SSP245,
SSP370, and SSP585 for the periods of 2021–2060) climates. Note: P09, P0709, and K0409 represent
total precipitation in September, total precipitation from July to September, and aridity index from
April to September.

Each cultivar has its own optimal environment condition [28]; here, we did not
consider the difference among cultivars. In the future, this key issue should be combined
to evaluate potential suitable areas for each special cultivar. Moreover, climate change
increases the intensity of some extreme weather events [73], such as extreme drought or
spring frost; thus, those areas where extreme events are frequent should also be considered
in future studies. In order to explore the changes in grapevine distribution from changing
climate, we only changed climate factors and kept other factors constant under future
climate scenario conditions. Despite all those limitations, our conclusions still highlight the
different suitable areas under both current and future climate conditions. Those results can
provide a guideline to develop new zones of viticulture and ensure low climate risks in
the next several decades; meanwhile, it will further promote the sustainable development
of the wine industry [3,5]. In the future research, assessing the potential suitability in
the whole wine regions of China is indispensable based on multi-source data, accurate
geographical distribution of grapes, multi-species distribution models, and multi-global
climate models.

5. Conclusions

Overall, climate, soil, topography, and remote-sensing-related indices all exert impor-
tant influences on the distribution of vineyards in Ningxia, namely, DEM, K0409, P0709,
NDVI0709, SOC, and P09. We developed a MaxEnt model with these six habitat variables,
which predicted the total potential suitable areas consistent with known wine regions
in Ningxia. Moreover, these projections suggest that highly suitable areas are mainly
distributed in Xixia, Qingtongxia, Helan, and Yongning, and moderately suitable areas
are distributed in Dawukou, Xingqing, Jinfeng, Lingwu, and Litong as well. In addi-
tion, considering the sustainable development of the wine industry, the potential suitable
areas decreased to 8826–9184 km2 under a short-term sustainability (suitable only from
the current period to 2040). Likewise, the potential suitable areas will decline over the
next 38 years (2022–2060). To further consider long-term and sustainable development
of the wine industry (current–2060), total potential suitable areas will drop by 26.7–29.2%
compared with current potential suitable areas (2001–2020). These findings are helpful
for delineating suitable adaptation strategies, providing insights into the challenges, and
facilitating the long-term and sustainable development of wine regions in China.
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