Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Image and Its Processing
2.3. Gully Morphological Characteristics Acquisition from DEM
2.4. Field Measurements of Gully Morphological Characteristics
2.5. Gully Volume Estimation and Topographic Threshold (S–A) Model Determination
3. Results
3.1. Evaluate Gully Morphological Characteristics Measured by UAV
3.2. Morphological Characteristics of Gullies at Small Watershed Scale
3.3. Estimating Gully Volume by Morphological Characteristics
3.4. Topological Threshold of Gully Initiation
4. Discussion
4.1. Access the Accuracy of Gully Morphological Characteristic Determined by UAV Images
4.2. Analysis of the Gully TW/D and Modelling Gully Volume
4.3. Topographic Threshold of Gully Initiation under Different Land Use Types
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poesen, J.; Vandaele, K.; Van Wesemael, B. Contribution of Gully Erosion to Sediment Production on Cultivated Lands and Rangelands. In Proceedings of the Erosion and Sediment Yield: Global and Regional Perspectives; Walling, D.E., Webb, B., Eds.; IAHS Publishing: Exeter, UK, 1996; p. 251. [Google Scholar]
- Food and Agricultural Organization. Soil Erosion by Water, Some Measures for Its Control on Cultivated Land; FAO Agricultural: Rome, Italy, 1965. [Google Scholar]
- Frankl, A.; Deckers, J.; Moulaert, L.; Van Damme, A.; Haile, M.; Poesen, J.; Nyssen, J. Integrated solutions for combating gully erosion in areas prone to soil piping: Innovations from the drylands of Northern Ethiopia. Land Degrad. Dev. 2016, 27, 1797–1804. [Google Scholar] [CrossRef]
- Poesen, J.W.A.; Torri, D.B.; Van Walleghem, T. Gully erosion: Procedures to adopt when modelling soil erosion in landscapes affected by gullying. In Handbook of Erosion Modelling; Morgan, R.P.C., Nearing, M.A., Eds.; John Wiley and Sons: London, UK, 2011; pp. 360–386. ISBN 9781405190107. [Google Scholar]
- Samani, A.N.; Wasson, R.J.; Malekian, A. Application of multiple sediment fingerprinting techniques to determine the sediment source contribution of gully erosion: Review and case study from Boushehr province, southwestern iran. Prog. Phys. Geogr. 2011, 35, 375–391. [Google Scholar] [CrossRef]
- Zanandrea, F.; Michel, G.P.; Kobiyama, M. Impedance influence on the index of sediment connectivity in a forested mountainous catchment. Geomorphology 2020, 351, 106962. [Google Scholar] [CrossRef]
- Najafi, S.; Dragovich, D.; Heckmann, T.; Sadeghi, S.H. Sediment connectivity concepts and approaches. Catena 2021, 196, 104880. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Masunaga, T.; Tsubo, M.; Billi, P.; Ebabu, K.; Fenta, A.A.; et al. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments. Geomorphology 2019, 341, 15–27. [Google Scholar] [CrossRef]
- Samani, A.N.; Ahmadi, H.; Mohammadi, A.; Ghoddousi, J.; Salajegheh, A.; Boggs, G.; Pishyar, R. Factors controlling gully advancement and models evaluation (Hableh Rood Basin, Iran). Water Resour. Manag. 2010, 24, 1531–1549. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Zheng, F.; Qin, C.; He, X. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique. Earth Surf. Process. Landf. 2018, 43, 1701–1710. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.; Yang, S.; Li, H.; Ma, H. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena 2017, 148, 195–203. [Google Scholar] [CrossRef]
- Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W. Analysis of the development of an erosion gully in an open-pit coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs. Remote Sens. 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Yang, S.; Zhao, C.; Lou, H.; Chen, K.; Zhang, C.; Wu, B. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau. Soil Tillage Res. 2021, 205, 104800. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Wang, P.; Gong, T.; Liu, H. Low altitude unmanned aerial vehicles (UAVs) and satellite remote sensing are used to calculated river discharge attenuation coefficients of ungauged catchments in arid desert. Water 2019, 11, 2633. [Google Scholar] [CrossRef] [Green Version]
- Lou, H.; Wang, P.; Yang, S.; Hao, F.; Ren, X.; Wang, Y.; Shi, L.; Wang, J.; Gong, T. Combining and comparing an unmanned aerial vehicle and multiple remote sensing satellites to calculate long-term river discharge in an ungauged water source region on the Tibetan plateau. Remote Sens. 2020, 12, 2155. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.; He, Y.; Yao, W. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 2015, 228, 462–469. [Google Scholar] [CrossRef]
- Liu, K.; Na, J.; Fan, C.; Huang, Y.; Ding, H.; Wang, Z.; Tang, G.; Song, C. Large-scale detection of the tableland areas and erosion-vulnerable hotspots on the Chinese Loess Plateau. Remote Sens. 2022, 14, 1946. [Google Scholar] [CrossRef]
- Wang, R.; Sun, H.; Yang, J.; Zhang, S.; Fu, H.; Wang, N.; Liu, Q. Quantitative evaluation of gully erosion using multitemporal UAV data in the southern black soil region of Northeast China: A case study. Remote Sens. 2022, 14, 1479. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 2005, 63, 154–166. [Google Scholar] [CrossRef]
- Kompani-Zare, M.; Soufi, M.; Hamzehzarghani, H.; Dehghani, M. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran. Catena 2011, 86, 150–159. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Chen, Y.; Haregeweyn, N.; De Geeter, S.; Campforts, B.; Heyndrickx, W.; Tsunekawa, A.; Poesen, J. Predicting gully densities at sub-continental scales: A case study for the Horn of Africa. Earth Surf. Process. Landf. 2020, 45, 3763–3779. [Google Scholar] [CrossRef]
- Schumm, S.A. River Variability and Complexity; Cambridge University Press: New York, NY, USA, 2005; ISBN 9781139165440. [Google Scholar]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- De Geeter, S.; Poesen, J.; Vanmaercke, M. Does the topographic threshold concept explain the initiation points of sunken lanes in the European loess belt? Catena 2020, 192, 104586. [Google Scholar] [CrossRef]
- Guo, W.Z.; Luo, L.; Wang, W.L.; Liu, Z.Y.; Chen, Z.X.; Kang, H.L.; Yang, B. Sensitivity of rainstorm-triggered shallow mass movements on gully slopes to topographical factors on the Chinese Loess Plateau. Geomorphology 2019, 337, 69–78. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, H.; Yang, H.; Zhang, B.; Wang, L. Effectiveness of typical plant communities in controlling runoff and soil erosion on steep gully slopes on the Loess Plateau of China. J. Hydrol. 2021, 602, 126714. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Deng, J.; Yu, S.; Zhao, Y. Long-term gully erosion and its response to human intervention in the tableland region of the chinese loess plateau. Remote Sens. 2021, 13, 5053. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Z.; Gai, H.; Kang, W. Typical riedel shear structures of the coseismic surface rupture zone produced by the 2021 Mw 7.3 Maduo earthquake, Qinghai, China, and the implications for seismic hazards in the block interior. Nat. Hazards Res. 2021, 1, 145–152. [Google Scholar] [CrossRef]
- Horvat, D.; Žalik, B.; Mongus, D. Context-dependent detection of non-linearly distributed points for vegetation classification in airborne LiDAR. ISPRS J. Photogramm. Remote Sens. 2016, 116, 1–14. [Google Scholar] [CrossRef]
- Gudino-Elizondo, N.; Biggs, T.W.; Castillo, C.; Bingner, R.L.; Langendoen, E.J.; Taniguchi, K.T.; Kretzschmar, T.; Yuan, Y.; Liden, D. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques. Land Degrad. Dev. 2018, 29, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Zhang, Y.; Zhao, Y.; Deng, J. Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China. Sci. Total Environ. 2020, 739, 140066. [Google Scholar] [CrossRef]
- Frankl, A.; Stal, C.; Abraha, A.; Nyssen, J.; Rieke-Zapp, D.; De Wulf, A.; Poesen, J. Detailed recording of gully morphology in 3D through image-based modelling. Catena 2015, 127, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Frankl, A.; Poesen, J.; Scholiers, N.; Jacob, M.; Haile, M.; Deckers, J.; Nyssen, J. Factors controlling the morphology and volume (V)-length (L) relations of permanent gullies in the northern Ethiopian Highlands. Earth Surf. Process. Landf. 2013, 38, 1672–1684. [Google Scholar] [CrossRef] [Green Version]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijdenes, D.; De Figueiredo, T. Topographical thresholds for ephemeral gully initiation in intensively cultivated areas of the Mediterranean. Catena 1998, 33, 271–292. [Google Scholar] [CrossRef]
- Ban, Y.Y.; Wang, W.; Lei, T.W. Measurement of rill and ephemeral gully flow velocities and their model expression affected by flow rate and slope gradient. J. Hydrol. 2020, 589, 125172. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Landscape Dissection and Drainage Area-Slope Thresholds. In Process Models and Theoretical Geomorphology; Kirkby, M.J., Ed.; Wiley: Chichester, UK, 1994; pp. 221–246. [Google Scholar]
- Majhi, A.; Nyssen, J.; Verdoodt, A. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh plain, India. Geomorphology 2021, 375, 107547. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Zhang, B. Soil saturated hydraulic conductivity of typical revegetated plants on steep gully slopes of Chinese Loess Plateau. Geoderma 2022, 412, 115717. [Google Scholar] [CrossRef]
Items | Details |
---|---|
UAV flight date | 17–24 April 2021 |
Equipment, camera | Dji Phantom 4 with RTK, DJI MAVIC2-ENTERPRISE-ADVANCED |
Number of images | 12, 427 |
Strips | Well-shaped |
Height of flight | 100 m |
Rate of overlap, side lap | 80%, 70% |
GSD | 33.31 mm/pixel |
GCPS | 10 points with “L” shape |
Tie points | 3,102,343 |
RMSE in XY of GCPS (horizontal) | 0.023 m |
RMSE in Z of GCPS (vertical) | 0.031 m |
RMSE in reprojection | 0.89 pixels |
Resolution of DEM and DOM | 0.053 m |
RMSE in XY of check points in DOM | 0.18 m |
RMSE in Z of check points in DEM | 0.27 m |
MAE | MSE | RMSE | NSE | MAPE (%) | |
---|---|---|---|---|---|
L (m) | 0.002 | 0.014 | 0.003 | 0.999 | 2.534 |
C (m) | 0.018 | 9.278 | 0.021 | 0.996 | 7.837 |
PA (m2) | 0.008 | 22.134 | 0.008 | 0.999 | 8.572 |
SA (m2) | 0.011 | 146.092 | 0.013 | 0.999 | 8.963 |
V (m3) | 0.040 | 71.552 | 0.047 | 0.995 | 15.894 |
D (m) | 0.053 | 0.129 | 0.070 | 0.958 | 13.867 |
TW (m) | 0.031 | 0.304 | 0.038 | 0.971 | 9.152 |
MW (m) | 0.046 | 0.289 | 0.055 | 0.963 | 11.435 |
CSA (m2) | 0.038 | 5.449 | 0.040 | 0.740 | 11.376 |
TW/D | 0.093 | 0.129 | 0.121 | 0.862 | 18.095 |
L (m) | C (m) | PA (m2) | SA (m2) | V (m3) | D (m) | TW (m) | MW (m) | CSA (m2) | TW/D | |
---|---|---|---|---|---|---|---|---|---|---|
L (m) | 1 | |||||||||
C (m) | 0.963 ** | 1 | ||||||||
PA (m2) | 0.890 ** | 0.900 ** | 1 | |||||||
SA (m2) | 0.884 ** | 0.896 ** | 0.990 ** | 1 | ||||||
V (m3) | 0.872 ** | 0.886 ** | 0.972 ** | 0.995 ** | 1 | |||||
D (m) | 0.321 ** | 0.319 ** | 0.417 ** | 0.470 ** | 0.499 ** | 1 | ||||
TW (m) | 0.565 ** | 0.585 ** | 0.698 ** | 0.706 ** | 0.708 ** | 0.587 ** | 1 | |||
MW (m) | 0.427 ** | 0.458 ** | 0.554 ** | 0.560 ** | 0.563 ** | 0.568 ** | 0.849 ** | 1 | ||
CSA (m2) | 0.471 ** | 0.481 ** | 0.639 ** | 0.680 ** | 0.701 ** | 0.760 ** | 0.828 ** | 0.715 ** | 1 | |
TW/D | 0.064 | 0.082 | 0.044 | 0.026 | 0.015 | 0.909 ** | 0.851 ** | 0.223 * | 0.118 | 1 |
Studies | Max TW/D | Min TW/D | Mean TW/D | Median TW/D | Soil Texture |
---|---|---|---|---|---|
Addisie et al., 2016 | 4.6 | 0.9 | 2.3 | 2.3 | Sandy loam |
Frankl et al., 2012 | 3.7 | 1.4 | 2.5 | 2.7 | Sandy loam |
Li et al., 2017 | 7.7 | 0.7 | 2.2 | 2.3 | Sandy loam |
Wu et al., 2018 | 4.1 | 0.7 | 2.2 | 2.3 | Sandy loam |
Yibeltal et al., 2019 | 6.9 | 1.4 | 3.5 | 3.1 | Clay |
This study | 16.9 | 0.6 | 4.6 | 4.8 | Loam |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, G.; Wang, C.; Xing, S. Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau. Remote Sens. 2022, 14, 3529. https://doi.org/10.3390/rs14153529
Wang Z, Zhang G, Wang C, Xing S. Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau. Remote Sensing. 2022; 14(15):3529. https://doi.org/10.3390/rs14153529
Chicago/Turabian StyleWang, Ziguan, Guanghui Zhang, Chengshu Wang, and Shukun Xing. 2022. "Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau" Remote Sensing 14, no. 15: 3529. https://doi.org/10.3390/rs14153529
APA StyleWang, Z., Zhang, G., Wang, C., & Xing, S. (2022). Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau. Remote Sensing, 14(15), 3529. https://doi.org/10.3390/rs14153529