The Influence of Image Properties on High-Detail SfM Photogrammetric Surveys of Complex Geometric Landforms: The Application of a Consumer-Grade UAV Camera in a Rock Glacier Survey
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Data Collection and Benchmark Generation
3.2. Image Processing
3.3. Processing of SfM Surveys
3.4. Comparison Methods
4. Results
4.1. SfM Surveys Properties
4.2. Quality of SfM Surveys
4.3. 3D Comparison of SfM Surveys
4.4. Geometric Attributes of SfM Surveys
4.5. 2.5D Comparison of SfM Surveys
4.6. 3D Comparison of TLS and SfM Surveys
5. Discussion
5.1. SfM Surveys Properties
5.2. Quality of SfM Surveys
5.3. 3D Comparison of SfM Surveys
5.4. 2.5D Comparison of SfM Surveys
5.5. 3D Comparison of TLS and SfM Surveys
5.6. Potential and Limitations in Monitoring Geomorphic Processes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benito-Calvo, A.; Haddoumi, H.; Aouraghe, H.; Oujaa, A.; Chacón, M.G.; Sala-Ramos, R. Geomorphological analysis using small unmanned aerial vehicles and submeter GNSS (Gara Soultana butte, High Plateaus Basin, Eastern Morocco). J. Maps 2020, 16, 459–467. [Google Scholar] [CrossRef]
- Brown, A.G.; Fallu, D.; Walsh, K.; Cucchiaro, S.; Tarolli, P.; Zhao, P.; Pears, B.R.; van Oost, K.; Snape, L.; Lang, A.; et al. Ending the Cinderella status of terraces and lynchets in Europe: The geomorphology of agricultural terraces and implications for ecosystem services and climate adaptation. Geomorphology 2021, 379, 107579. [Google Scholar] [CrossRef]
- de Sanjosé Blasco, J.J.; Serrano-Cañadas, E.; Sánchez-Fernández, M.; Gómez-Lende, M.; Redweik, P. Application of Multiple Geomatic Techniques for Coastline Retreat Analysis: The Case of Gerra Beach (Cantabrian Coast, Spain). Remote Sens. 2020, 12, 3669. [Google Scholar] [CrossRef]
- Granados-Bolaños, S.; Quesada-Román, A.; Alvarado, G.E. Low-cost UAV applications in dynamic tropical volcanic landforms. J. Volcanol. Geotherm. Res. 2021, 410, 107143. [Google Scholar] [CrossRef]
- Ewertowski, M.W.; Tomczyk, A.M.; Evans, D.J.A.; Roberts, D.H.; Ewertowski, W. Operational Framework for Rapid, Very-high Resolution Mapping of Glacial Geomorphology Using Low-cost Unmanned Aerial Vehicles and Structure-from-Motion Approach. Remote Sens. 2019, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Santos-González, J.; González-Gutiérrez, R.B.; Redondo-Vega, J.M.; Gómez-Villar, A.; Jomelli, V.; Fernández-Fernández, J.M.; Andrés, N.; García-Ruiz, J.M.; Peña-Pérez, S.A.; Melón-Nava, A.; et al. The origin and collapse of rock glaciers during the Bølling-Allerød interstadial: A new study case from the Cantabrian Mountains (Spain). Geomorphology 2022, 401, 108112. [Google Scholar] [CrossRef]
- Vidaller, I.; Revuelto, J.; Izagirre, E.; Rojas-Heredia, F.; Alonso-González, E.; Gascoin, S.; René, P.; Berthier, E.; Rico, I.; Moreno, A.; et al. Toward an Ice-Free Mountain Range: Demise of Pyrenean Glaciers During 2011–2020. Geophys. Res. Lett. 2021, 48, e2021GL094339. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüller, B.; Frauenfelder, R.; Gruber, S.; Haeberli, W.; Hauck, C.; Hölzle, M.; Humlum, O.; et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Rev. 2009, 92, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Oliva, M.; Serrano, E.; Gómez-Ortiz, A.; González-Amuchastegui, M.J.; Nieuwendam, A.; Palacios, D.; Pérez-Alberti, A.; Pellitero-Ondicol, R.; Ruiz-Fernández, J.; Valcárcel, M.; et al. Spatial and temporal variability of periglaciation of the Iberian Peninsula. Quat. Sci. Rev. 2016, 137, 176–199. [Google Scholar] [CrossRef]
- Serrano, E.; Oliva, M.; González-García, M.; López-Moreno, J.I.; González-Trueba, J.; Martín-Moreno, R.; Gómez-Lende, M.; Martín-Díaz, J.; Nofre, J.; Palma, P. Post-little ice age paraglacial processes and landforms in the high Iberian mountains: A review. Land Degrad. Dev. 2018, 29, 4186–4208. [Google Scholar] [CrossRef] [Green Version]
- Serrano, E.; de Sanjosé-Blasco, J.J.; Gómez-Lende, M.; López-Moreno, J.I.; Pisabarro, A.; Martínez-Fernández, A. Periglacial environments and frozen ground in the central Pyrenean high mountain area: Ground thermal regime and distribution of landforms and processes. Permafr. Periglac. Process. 2019, 30, 292–309. [Google Scholar] [CrossRef]
- Śledź, S.; Ewertowski, M.W.; Piekarczyk, J. Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology. Geomorphology 2021, 378, 107620. [Google Scholar] [CrossRef]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current practices in UAS-based environmental monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Chandler, J.H.; Eltner, A.; Fraser, C.; Miller, P.E.; Mills, J.P.; Noble, T.; Robson, S.; Lane, S.N. Guidelines on the use of structure-from-motion photogrammetry in geomorphic research. Earth Surf. Process. Landf. 2019, 44, 2081–2084. [Google Scholar] [CrossRef]
- Casella, V.; Chiabrando, F.; Franzini, M.; Manzino, A.M. Accuracy Assessment of a UAV Block by Different Software Packages, Processing Schemes and Validation Strategies. ISPRS Int. J. Geo-Inf. 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, H.; Vivero, S.; De Cock, L.; De Wit, B.; De Maeyer, P.; Lambiel, C.; Delaloye, R.; Nyssen, J.; Frankl, A. The reproducibility of SfM algorithms to produce detailed Digital Surface Models: The example of PhotoScan applied to a high-alpine rock glacier. Remote Sens. Lett. 2019, 10, 11–20. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; D’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Alfio, V.S.; Costantino, D.; Pepe, M. Influence of Image TIFF Format and JPEG Compression Level in the Accuracy of the 3D Model and Quality of the Orthophoto in UAV Photogrammetry. J. Imaging 2020, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, V.; Williams, J.G.; Zahs, V.; Anders, K.; Hecht, S.; Höfle, B. Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds. Earth Surf. Dyn. 2021, 9, 19–28. [Google Scholar] [CrossRef]
- Serrano, E.; Agudo, C.; Delaloyé, R.; González-Trueba, J.J. Permafrost distribution in the Posets massif, Central Pyrenees. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2010, 55, 245–252. [Google Scholar] [CrossRef]
- Serrano, E. The existing glaciers of the Iberian Peninsula: The Central Pyrenees. Iberia Land Glaciers 2022, 525–553. [Google Scholar] [CrossRef]
- Serrano, E.; de Sanjosé, J.J.; González-Trueba, J.J. Rock glacier dynamics in marginal periglacial environments. Earth Surf. Process. Landf. 2010, 35, 1302–1314. [Google Scholar] [CrossRef]
- Lugon, R.; Delaloye, R.; Serrano, E.; Reynard, E.; Lambiel, C.; González-Trueba, J.J. Permafrost and Little Ice Age glacier relationships, Posets Massif, Central Pyrenees, Spain. Permafr. Periglac. Process. 2004, 15, 207–220. [Google Scholar] [CrossRef]
- Martínez-Fernández, A.; Serrano, E.; Sanjosé, J.J.; Gómez-Lende, M.; Pisabarro, A.; Sánchez, M. Geomatic methods applied to the change study of the La Paúl rock glacier, Spanish Pyrenees. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1771–1775. [Google Scholar] [CrossRef] [Green Version]
- CNIG. Centro de Descargas National Center for Geographic Information. Centro de Descagas del CNIG. 2019. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 23 September 2020).
- Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.; Hugenholtz, C. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, J.; Smith, M.J.; James, M.R. Cameras and settings for aerial surveys in the geosciences. Prog. Phys. Geogr. Earth Environ. 2017, 41, 325–344. [Google Scholar] [CrossRef] [Green Version]
- Rangel, J.M.G.; Gonçalves, G.R.; Pérez, J.A. The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. Int. J. Remote Sens. 2018, 39, 7154–7171. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- ERGNSS. Red Geodésica Nacional de Estaciones de Referencia GNSS (ERGNSS)—IGN. 2020. Available online: https://www.ign.es/web/ign/portal/gds-gnss-estaciones-permanentes (accessed on 23 September 2020).
- James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar] [CrossRef]
- USGS NUPO Materials. Processing UAS Imagery Using Agisoft Photoscan. USGS National Unmanned Aircraft Systems Project Office (NUPO) Materials. 2021. Available online: https://uas.usgs.gov/nupo/pdf/BauerPhotoscanNASAMarch2017.pdf (accessed on 24 September 2020).
- P4P Color Profiles. GitHub-Darana/P4P__Color-Profiles: Color Profiles for the Phantom 4 Pro Drone. 2017. Available online: https://github.com/darana/P4P__color-profiles (accessed on 5 April 2021).
- USGS NUPO Materials. USGS Agisoft PhotoScan Workflow. USGS National Unmanned Aircraft Systems Project Office (NUPO) Materials. 2021. Available online: https://uas.usgs.gov/nupo/pdf/USGSAgisoftPhotoScanWorkflow.pdf (accessed on 19 September 2020).
- Agisoft Beginner Level Tutorials. Orthophoto & DEM Generation (with GCPs). 2020. Available online: https://www.agisoft.com/support/tutorials/beginner-level/ (accessed on 23 April 2020).
- QGIS. Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. Available online: http://qgis.osgeo.org (accessed on 9 June 2022).
- Benito-Calvo, A.; Gutiérrez, F.; Martínez-Fernández, A.; Carbonel, D.; Karampaglidis, T.; Desir, G.; Sevil, J.; Guerrero, J.; Fabregat, I.; García-Arnay, Á. 4D Monitoring of Active Sinkholes with a Terrestrial Laser Scanner (TLS): A Case Study in the Evaporite Karst of the Ebro Valley, NE Spain. Remote Sens. 2018, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, A.; Benito-Calvo, A.; Campaña, I.; Ortega, A.I.; Karampaglidis, T.; Bermúdez de Castro, J.M.; Carbonell, E. 3D monitoring of Paleolithic archaeological excavations using terrestrial laser scanner systems (Sierra de Atapuerca, Railway Trench sites, Burgos, N Spain). Digit. Appl. Archaeol. Cult. Herit. 2020, 19, e00156. [Google Scholar] [CrossRef]
- CloudCompare. CloudCompare (Version 2.11) [GPL Software]. 2020. Available online: http://www.cloudcompare.org/ (accessed on 9 June 2022).
- RGIK. Towards Standard Guidelines for Inventorying Rock Glaciers: Baseline Concepts; Version 4.2; IPA Action Group Rock Glacier Inventories and Kinematics, Ed.; University of Fribourg: Fribourg, Switzerland, 2021; p. 13. [Google Scholar]
- Groh, T.; Blöthe, J.H. Rock Glacier Kinematics in the Kaunertal, Ötztal Alps, Austria. Geosciences 2019, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Zahs, V.; Hämmerle, M.; Anders, K.; Hecht, S.; Sailer, R.; Rutzinger, M.; Williams, J.G.; Höfle, B. Multi-temporal 3D point cloud-based quantification and analysis of geomorphological activity at an alpine rock glacier using airborne and terrestrial LiDAR. Permafr. Periglac. Process. 2019, 30, 222–238. [Google Scholar] [CrossRef]
- Koutalakis, P.D.; Tzoraki, O.A.; Prazioutis, G.I.; Gkiatas, G.T.; Zaimes, G.N. Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions. Sustainability 2021, 13, 4697. [Google Scholar] [CrossRef]
- Akay, S.S.; Özcan, O.; Sanli, F.B.; Görüm, T.; Sen, Ö.L.; Bayram, B. UAV-based evaluation of morphological changes induced by extreme rainfall events in meandering rivers. PLoS ONE 2020, 15, e0241293. [Google Scholar] [CrossRef]
- Ybañez, R.L.; Ybañez, A.A.B.; Lagmay, A.M.F.A.; Aurelio, M.A. Imaging ground surface deformations in post-disaster settings via small UAVs. Geosci. Lett. 2021, 8, 23. [Google Scholar] [CrossRef]
Camera Specs and Parameters | |||||||
Model | Hasselblad L1D-20c | Sensor | 1″ CMOS (20 MP) | ||||
Focal length (mm) | 28 (35 mm equivalent); 10.26 (true focal length) | Vel. Obturator (seg.) | 1/800-1/1250 | ||||
Lens aperture | f/7.1 | ISO | 100 | ||||
Image size (pix; format) | 5472 × 3078; JPEG 5464 × 3070; DNG | Image bit depth (bit; format) | 8; JPEG 16; DNG | ||||
Flight Design | |||||||
Phase 1: Nadiral imagery | Phase 2: Oblique imagery | ||||||
Camera tilt to the vertical (°) | 0 | Strip strategy | Perpendicular to the tongue | Camera tilt to the vertical (°) | 25 | Strip strategy | Parallel to the tongue |
AGL altitude (m) | 78.6 | GSD (mm) | 20 | AGL altitude (m) | 88.4 | GSD (mm) | 22.5 |
Image overlap (forward-side; %) | 80-80 | Number of images | 303 | Image overlap (forward-side; %) | 70-65 | Number of images | 125 |
Ground Control | |||||||
Number of GCP | 12 | GCP dimensions (m) | 1 × 1 | ||||
GCP measurement method | dGNSS-RTK base and rover. Post-processing through permanent station network | Min/max GCPs precision (XY, Z; mm) | ±6/±16 ±12/±25 |
Steps and Parameters |
---|
1. Add photos |
2. Set coordinate system |
3. Camera calibration checks Unique camera group; check on: ‘Enable rolling shuttter compensation’ |
4. Align photos High accuracy; generic and reference preselection; 40K key points limit; 4K tie-point limit; adaptive camera model fitting |
5. Place markers |
6. Input marker GNSS-RTK coordinates and accuracy |
7. Remove tie points with the highest reprojection error values About the 5% of the tie points |
8. Set image coordinates’ accuracy 0.1 pix marker accuracy; 1 pix tie-point accuracy |
9. Optimize camera alignment Disable image coordinates; adaptative camera model fitting |
10. Generate dense cloud High quality; aggressive depth filtering; calculate point colors |
Bundle Adjustment RMSEs | ||||
---|---|---|---|---|
DNG | JPG | TIFF.def | TIFF.mod | |
Reproj. Error (pix) | 0.412 | 0.446 | 0.39 | 0.409 |
GCPs XY (mm) | 24 | 24 | 24 | 24 |
GCPs Z (mm) | 32 | 37 | 32 | 32 |
GCPs 3D (mm) | 40 | 44 | 41 | 40 |
GCPs Image (pix) | 0.19 | 0.268 | 0.197 | 0.189 |
DNG | JPG | TIFF.def | TIFF.mod | |
---|---|---|---|---|
Survey overall mean tie-point precision | ||||
Full (XY; Z, mm) | 119.59; 185.77 | 116.0; 199.0 | 113.1; 176.3 | 117.5; 188.0 |
Shape (XY; Z, mm) | 119.2; 184.2 | 115.7; 197.7 | 112.7; 174.8 | 117.3; 186.5 |
Survey overall georeferencing precision | ||||
Translation (XY; Z, mm) | 6.41; 8.06 | 5.88; 7.8 | 6.39; 8.06 | 6.58; 8.6 |
Slope (angles to X; Y; Z axes; mdeg) Rotation (as Euler angles) | 3.8; 8.08; 3.13 | 3.8; 8.3; 3.1 | 3.89; 8.27; 3.1 | 4.2; 8.5; 3.2 |
Scale (%) | 0.0037 | 0.0035 | 0.0036 | 0.0037 |
M3C2-PM Distances (Mean ± SD; mm) | M3C2-PM Distances (Significant Change; % of Points) | |||||
---|---|---|---|---|---|---|
DNG-JPG | DNG-TIFF.def | DNG-TIFF.mod | DNG-JPG | DNG-TIFF.def | DNG-TIFF.mod | |
Survey | 26 ± 77 | 6 ± 27 | 8 ± 27 | 7 | 0 | 0 |
RG | 3 ± 28 | 4 ± 12 | 5 ± 11 | 7 | 1 | 1 |
S1 | 6 ± 18 | 5 ± 13 | 6 ± 13 | 3 | 2 | 1 |
S2 | −9 ± 26 | 1 ± 21 | 2 ± 18 | 5 | 2 | 2 |
S3 | 18 ± 15 | 4 ± 11 | 4 ± 10 | 8 | 2 | 1 |
S4 | 3 ± 33 | 3 ± 23 | 4 ± 22 | 5 | 3 | 3 |
S5 | −5 ± 23 | 3 ± 17 | 5 ± 14 | 2 | 1 | 1 |
S6 | 14 ± 13 | 3 ± 9 | 5 ± 8 | 3 | 1 | 1 |
S7 | 4 ± 21 | 3 ± 19 | 6 ± 19 | 4 | 3 | 3 |
S8 | −7 ± 22 | 4 ± 18 | 7 ± 16 | 3 | 2 | 1 |
S9 | 8 ± 16 | 2 ± 12 | 6 ± 11 | 3 | 2 | 2 |
S10 | 2 ± 9 | 3 ± 7 | 6 ± 7 | 1 | 0 | 0 |
S11 | 5 ± 16 | 3 ± 13 | 4 ± 10 | 3 | 1 | 1 |
S12 | −3 ± 7 | 2 ± 5 | 4 ± 5 | 0 | 0 | 0 |
DoD Distances (Mean ± SD; mm) | DoD Distances (Significant Change; % of Pixels) | |||||
---|---|---|---|---|---|---|
DNG-JPG | DNG-TIFF.def | DNG-TIFF.mod | DNG-JPG | DNG-TIFF.def | DNG-TIFF.mod | |
Survey | 35 ± 104 | 8 ± 41 | 10 ± 42 | 20 | 2 | 2 |
RG | 4 ± 35 | 5 ± 17 | 6 ± 14 | 1 | 0 | 0 |
S1 | 7 ± 24.1 | 6 ± 18 | 8 ± 19 | 0 | 0 | 0 |
S2 | −12 ± 39 | 1 ± 30 | 3 ± 26 | 0 | 0 | 0 |
S3 | 21 ± 16 | 5 ± 14 | 5 ± 12 | 0 | 0 | 0 |
S4 | 3 ± 48 | 5 ± 32 | 5 ± 31 | 0 | 0 | 0 |
S5 | −7 ± 31 | 5 ± 24 | 7 ± 20 | 0 | 0 | 0 |
S6 | 16 ± 16 | 4 ± 14 | 6 ± 12 | 0 | 0 | 0 |
S7 | 4 ± 42 | 3 ± 14 | 7 ± 41 | 0 | 0 | 0 |
S8 | −8 ± 29 | 6 ± 26 | 9 ± 23 | 0 | 0 | 0 |
S9 | 9 ± 22 | 3 ± 18 | 7 ± 16 | 0 | 0 | 0 |
S10 | 2 ± 12 | 4 ± 12 | 7 ± 11 | 0 | 0 | 0 |
S11 | 7 ± 25 | 4 ± 21 | 6 ± 18 | 0 | 0 | 0 |
S12 | −4 ± 10 | 3 ± 10 | 5 ± 10 | 0 | 0 | 0 |
M3C2-PM Distances (Mean ± SD; mm) | M3C2-PM Distances (Significant Change; % of Points) | |||||||
---|---|---|---|---|---|---|---|---|
TLS-DNG | TLS-JPG | TLS-TIFF.def | TLS-TIFF.mod | TLS-DNG | TLS-JPG | TLS-TIFF.def | TLS-TIFF.mod | |
Survey | 2 ± 153 | 8 ± 155 | 8 ± 150 | 8 ± 153 | 15 | 14 | 14 | 15 |
RG | −8 ± 162 | −5 ± 158 | −2 ± 157 | −2 ± 161 | 18 | 17 | 17 | 18 |
S1 | −24 ± 155 | −19 ± 145 | −17 ± 152 | −17 ± 153 | 17 | 14 | 16 | 17 |
S2 | 6 ± 208 | −1 ± 199 | 8 ± 201 | 8 ± 206 | 28 | 26 | 26 | 27 |
S3 | −51 ± 140 | −28 ± 131 | −43 ± 135 | −45 ± 140 | 17 | 13 | 15 | 16 |
S4 | −13 ± 223 | −5 ± 211 | −7 ± 214 | −8 ± 217 | 27 | 22 | 24 | 27 |
S5 | 10 ± 232 | 8 ± 221 | 14 ± 225 | 14 ± 230 | 27 | 27 | 28 | 26 |
S6 | −47 ± 150 | −29 ± 141 | −42 ± 145 | −41 ± 149 | 22 | 15 | 19 | 20 |
S7 | −37 ± 147 | −26 ± 137 | −28 ± 135 | −28 ± 141 | 20 | 15 | 17 | 17 |
S8 | 50 ± 255 | 45 ± 247 | 55 ± 248 | 56 ± 254 | 33 | 32 | 33 | 30 |
S9 | −50 ± 125 | −37 ± 117 | −43 ± 119 | −43 ± 122 | 20 | 14 | 16 | 17 |
S10 | 13 ± 108 | 17 ± 103 | 17 ± 104 | 19 ± 107 | 10 | 9 | 10 | 10 |
S11 | 28 ± 185 | 36 ± 180 | 33 ± 180 | 32 ± 184 | 26 | 26 | 26 | 27 |
S12 | −11 ± 76 | −13 ± 73 | −7 ± 74 | −7 ± 77 | 6 | 5 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Fernández, A.; Serrano, E.; Pisabarro, A.; Sánchez-Fernández, M.; de Sanjosé, J.J.; Gómez-Lende, M.; Rangel-de Lázaro, G.; Benito-Calvo, A. The Influence of Image Properties on High-Detail SfM Photogrammetric Surveys of Complex Geometric Landforms: The Application of a Consumer-Grade UAV Camera in a Rock Glacier Survey. Remote Sens. 2022, 14, 3528. https://doi.org/10.3390/rs14153528
Martínez-Fernández A, Serrano E, Pisabarro A, Sánchez-Fernández M, de Sanjosé JJ, Gómez-Lende M, Rangel-de Lázaro G, Benito-Calvo A. The Influence of Image Properties on High-Detail SfM Photogrammetric Surveys of Complex Geometric Landforms: The Application of a Consumer-Grade UAV Camera in a Rock Glacier Survey. Remote Sensing. 2022; 14(15):3528. https://doi.org/10.3390/rs14153528
Chicago/Turabian StyleMartínez-Fernández, Adrián, Enrique Serrano, Alfonso Pisabarro, Manuel Sánchez-Fernández, José Juan de Sanjosé, Manuel Gómez-Lende, Gizéh Rangel-de Lázaro, and Alfonso Benito-Calvo. 2022. "The Influence of Image Properties on High-Detail SfM Photogrammetric Surveys of Complex Geometric Landforms: The Application of a Consumer-Grade UAV Camera in a Rock Glacier Survey" Remote Sensing 14, no. 15: 3528. https://doi.org/10.3390/rs14153528
APA StyleMartínez-Fernández, A., Serrano, E., Pisabarro, A., Sánchez-Fernández, M., de Sanjosé, J. J., Gómez-Lende, M., Rangel-de Lázaro, G., & Benito-Calvo, A. (2022). The Influence of Image Properties on High-Detail SfM Photogrammetric Surveys of Complex Geometric Landforms: The Application of a Consumer-Grade UAV Camera in a Rock Glacier Survey. Remote Sensing, 14(15), 3528. https://doi.org/10.3390/rs14153528