A Simple Deposition Model for Debris Flow Simulation Considering the Erosion–Entrainment–Deposition Process
Abstract
:1. Introduction
2. Methods
2.1. Governing Equation and Numerical Model
2.2. Deposition Model with Erosion–Entrainment Phenomena
2.3. Analysis Method
3. Study Event
3.1. 2011 Mt. Umyeon Debris Flows
3.2. 2020 Gokseong-Gun Debris Flows
4. Results
4.1. Simulation Results: Mt. Umyeon Area
4.2. Simulation Results: Seongdeok Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coe, J.A.; Kean, J.W.; Godt, J.W.; Baum, R.L.; Jones, E.S.; Gochis, D.J.; Anderson, G.S. New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range. GSA Today 2014, 24, 4–10. [Google Scholar] [CrossRef]
- Takahashi, T. Debris Flow: Mechanics, Prediction and Countermeasures; Taylor & Francis: Abingdon, UK, 2007. [Google Scholar]
- Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 2011, 4, 116–121. [Google Scholar] [CrossRef]
- Zhou, G.G.; Li, S.; Song, D.; Choi, C.E.; Chen, X. Depositional mechanisms and morphology of debris flow: Physical modelling. Landslides 2019, 16, 315–332. [Google Scholar] [CrossRef]
- Oguchi, T.; Oguchi, C.T. Late Quaternary rapid talus dissection and debris flow deposition on an alluvial fan in Syria. Catena 2004, 55, 125–140. [Google Scholar] [CrossRef]
- Blasone, G.; Cavalli, M.; Marchi, L.; Cazorzi, F. Monitoring sediment source areas in a debris-flow catchment using terrestrial laser scanning. Catena 2014, 123, 23–36. [Google Scholar] [CrossRef]
- Hürlimann, M.; Abancó, C.; Moya, J.; Vilajosana, I. Results and experiences gathered at the Rebaixader debris-flow monitoring site, Central Pyrenees, Spain. Landslides 2014, 11, 939–953. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Y.; Li, B.; Feng, Z.; Wang, W.; Zhang, N.; Xing, A. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide–debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms 8.0 earthquake. Landslides 2017, 14, 1361–1374. [Google Scholar] [CrossRef]
- Lyu, L.; Xu, M.; Wang, Z.; Cui, Y.; Blanckaert, K. A field investigation on debris flows in the incised Tongde sedimentary basin on the northeastern edge of the Tibetan Plateau. Catena 2022, 208, 105727. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Bateman, A. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 2008, 5, 127–142. [Google Scholar] [CrossRef]
- Gregoretti, C.; Degetto, M.; Boreggio, M. GIS-based cell model for simulating debris flow runout on a fan. J. Hydrol. 2016, 534, 326–340. [Google Scholar] [CrossRef]
- Han, Z.; Su, B.; Li, Y.; Wang, W.; Wang, W.; Huang, J.; Chen, G. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model. Eng. Geol. 2019, 255, 26–36. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, Z.; An, H.; Liu, X.; Wang, D. An example of a hazard and risk assessment for debris flows—A case study of Niwan Gully, Wudu, China. Eng. Geol. 2019, 263, 105351. [Google Scholar] [CrossRef]
- Chang, M.; Liu, Y.; Zhou, C.; Che, H. Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China. Eng. Geol. 2020, 275, 105733. [Google Scholar] [CrossRef]
- Liu, W.; He, S. Comprehensive modelling of runoff-generated debris flow from formation to propagation in a catchment. Landslides 2020, 17, 1529–1544. [Google Scholar] [CrossRef]
- Hungr, O.; Corominas, J.; Eberhardt, E. Estimating landslide motion mechanism, travel distance and velocity. In Landslide Risk Management; CRC Press: Boca Raton, FL, USA, 2005; pp. 109–138. [Google Scholar]
- Mangeney, A.; Bouchut, F.; Thomas, N.; Vilotte, J.P.; Bristeau, M.O. Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Remaître, A.; Malet, J.P.; Maquaire, O. Morphology and sedimentology of a complex debris flow in a clay-shale basin. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Gr. 2005, 30, 339–348. [Google Scholar] [CrossRef]
- Pudasaini, S.P.; Krautblatter, M. The Mechanics of Landslide Mobility with Erosion. Nat. Commun. 2021, 12, 6793. [Google Scholar] [CrossRef]
- Schuerch, P. Debris-Flow Erosion and Deposition Dynamics; Durham University: Durham, UK, 2011. [Google Scholar]
- Laigle, D.; Coussot, P. Numerical modeling of mudflows. J. Hydraul. Eng. 1997, 123, 617–623. [Google Scholar] [CrossRef]
- Denlinger, R.P.; Iverson, R.M. Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res. Solid Earth 2001, 106, 553–566. [Google Scholar] [CrossRef]
- Chen, H.; Lee, C.F. A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 2003, 51, 269–288. [Google Scholar] [CrossRef]
- Rickenmann, D.; Laigle, D.; McArdell, B.; Hübl, J. Comparison of 2D debris-flow simulation models with field events. Comput. Geosci. 2006, 10, 241–264. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Kim, M.; Lee, G.; Kim, Y.; Lim, H. Estimation of the area of sediment deposition by debris flow using a physical-based modeling approach. Quat. Int. 2019, 503, 59–69. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakagawa, H. Prediction of stony debris flow induced by severe rainfall. J. Jpn. Soc. Eros. Control Eng. 1991, 44, 12–19. [Google Scholar] [CrossRef]
- McDougall, S.; Hungr, O. Dynamic modelling of entrainment in rapid landslides. Can. Geotech. J. 2005, 42, 1437–1448. [Google Scholar] [CrossRef]
- Sovilla, B.; Burlando, P.; Bartelt, P. Field experiments and numerical modeling of mass entrainment in snow avalanches. J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef]
- Frank, F.; McArdell, B.W.; Huggel, C.; Vieli, A. The importance of entrainment and bulking on debris flow runout modeling: Examples from the Swiss Alps. Nat. Hazards Earth Syst. Sci. 2015, 15, 2569–2583. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. Dynamics of Debris Flows in the Inertial Regime. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; ASCE: Reston, VA, USA, 1997; pp. 239–248. [Google Scholar]
- Egashira, S. Constitutive Equations of Debris Flow and Their Applicability. In Proceedings of the 1st International Conference Water Resources Engineering Division/ASCE at San Francisco, San Antonio, TX, USA, 14–18 August 1995; ASCE: Reston, VA, USA, 1997; pp. 340–349. [Google Scholar]
- Satofuka, Y.; Mizuyama, T. Numerical simulation on debris flow control by a grid dam. J. Jpn. Soc. Eros. Control Eng. 2005, 57, 21–27. [Google Scholar]
- Shrestha, B.B.; Nakagawa, H.; Kawaike, K.; Baba, Y. Numerical simulation on debris-flow deposition and erosion processes upstream of a check dam with experimental verification. Disaster Prev. Res. Inst. Annu. 2008, 51, 613–624. [Google Scholar]
- Pudasaini, S.P.; Fischer, J.-T. A mechanical erosion model for two-phase mass flows. Int. J. Multiph. Flows 2020, 132, 103416. [Google Scholar] [CrossRef]
- Naef, D.; Rickenmann, D.; Rutschmann, P.; McArdell, B. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci. 2006, 6, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, P.; Buehler, Y.; Christen, M.; Deubelbeiss, Y.; Graf, C.; McArdell, B. RAMMS–Rapid Mass Movement Simulation, A Modeling System for Debris Flows in Research and Practice, User Manual v1.5, Debris Flow, Manuscript Update: 31 January 2013; WSL Institute for Snow and Avalanche Research SLF: Davos, Switzerland, 2013; Available online: http://ramms.slf.ch/ramms/downloads/RAMMS_DBF_Manual.pdf (accessed on 27 February 2015).
- Audusse, E.; Bouchut, F.; Bristeau, M.O.; Klein, R.; Perthame, B.T. A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows. SIAM J. Sci. Comput. 2004, 25, 2050–2065. [Google Scholar] [CrossRef]
- An, H.; Ichikawa, Y.; Tachikawa, Y.; Shiiba, M. Comparison between iteration schemes for three-dimensional coordinate-transformed saturated–unsaturated flow model. J. Hydrol. 2012, 470–471, 212–226. [Google Scholar] [CrossRef]
- Shen, W.; Wang, D.; Qu, H.; Li, T. The effect of check dams on the dynamic and bed entrainment processes of debris flows. Landslides 2019, 16, 2201–2217. [Google Scholar] [CrossRef]
- Lee, S.; An, H.; Kim, M.; Lim, H. Analysis of debris flow simulation parameters with entrainment effect: A case study in the Mt. Umyeon. J. Korea Water Resour. Assoc. 2020, 53, 637–646. [Google Scholar] [CrossRef]
- Lim, H. Erosion-Deposition Characteristics of Debris Flow Using Laboratory Experiment and Numerical Analysis; Kangwon National University: Chuncheon, Korea, 2021. [Google Scholar]
- Godt, J.; Baum, R.; Savage, W.; Salciarini, D.; Schulz, W.; Harp, E. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [Google Scholar] [CrossRef]
- Cepeda, J.; Chávez, J.A.; Cruz Martínez, C. Procedure for the selection of runout model parameters from landslide back-analyses: Application to the Metropolitan Area of San Salvador, El Salvador. Landslides 2010, 7, 105–116. [Google Scholar] [CrossRef]
- Kim, S.; Paik, J.; Kim, K.S. Run-out modeling of debris flows in Mt. Umyeon using FLO-2D. J. Korean Soc. Civ. Eng. 2013, 33, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Park, D.W.; Nikhil, N.; Lee, S. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Lee, S.R.; Park, J.Y. Numerical Simulation of Debris Flow Behavior at Mt. Umyeon using the DAN3D Model. J. Korean Soc. Hazard. Mitig. 2019, 19, 195–202. [Google Scholar] [CrossRef]
- Hong, M.; Jeong, S.; Kim, J. A combined method for modeling the triggering and propagation of debris flows. Landslides 2020, 17, 805–824. [Google Scholar] [CrossRef]
- Korean Geotechnical Society. Research Contract Report: Addition and Complement Causes Survey of Mt. Woomyeon Landslide; Research Report, 51-6110000-000649-01; Korean Geotechnical Society: Seoul, Korea, 2014; Volume 2011. [Google Scholar]
- Choi, S.K.; Ramirez, R.A.; Kwon, T.H. Preliminary report of a catastrophic landslide that occurred in Gokseong County, South Jeolla Province, South Korea, on 7 August 2020. Landslides 2021, 18, 1465–1469. [Google Scholar] [CrossRef]
- Cho, M.; Choi, Y.; Ha, K.; Kee, W.; Lachassagne, P.; Wyns, R. Paleoweathering covers in Korean hard rocks: A methodology for mapping their spatial distribution and the thickness of their constituting horizons. Applications to identify brittle deformation and to hard rock hydrogeology. KIGAM Bull. 2002, 6, 12–25. [Google Scholar]
Study Event | Voellmy Rheology | Erosion–Entrainment | Deposition | ||||
---|---|---|---|---|---|---|---|
μ | ξ (m/s2) | dz/dteros. (m/s) | τeros. (kPa) | dz/dτ (m/kPa) | ρ (kg/m3) | dz/dtdepos. (m/s) | |
Raemian apartment basin | 0.04 | 3000 | 0.08 | 1.0 | 0.3 | 1900 | 0.01 |
Sindonga apartment basin | 0.04 | 3000 | 0.07 | 1.5 | 0.3 | 1900 | 0.01 |
Seongdeok basin | 0.05 | 2000 | 0.07 | 1.0 | 0.2 | 1900 | 0.01 |
Study Event | With/Without Deposition | Volume of Soil Loss (m3) | Inundated Depth (m) | Maximum Velocity (m/s) |
---|---|---|---|---|
Raemian apartment basin | with- | 25,260 | 10 | 19 |
without- | 47,390 | 11 | 19 | |
observation | 25,940 | 9–11 | 28 | |
Sindonga apartment basin | with- | 21,900 | 6 | 16 |
without- | 48,170 | 6 | 16 | |
observation | 21,070 | 6–8 | 18 |
Study Event | With/Without Deposition | Acc. | Total Acc. | |||
---|---|---|---|---|---|---|
Impact Area | Volume of Soil Loss | Inundated Depth | Maximum Velocity | |||
wi | 3 | 1 | 2 | 1 | ||
Raemian apartment basin | with- | 0.914 | 0.974 | 1.000 | 0.679 | 0.914 |
without- | 0.868 | 0.173 | 1.000 | 0.679 | 0.779 | |
Sindonga apartment basin | with- | 0.857 | 0.961 | 1.000 | 0.889 | 0.917 |
without- | 0.794 | 0.000 | 1.000 | 0.889 | 0.753 |
Study Event | With/Without Deposition | Volume of Soil Loss (m3) | Inundated Depth(m) | Maximum Velocity (m/s) | Impact Area (Acc.) |
---|---|---|---|---|---|
Seongdeok basin | with- | 29,600 | 6 | 10 | 0.952 |
without- | 41,980 | 6 | 10 | 0.909 | |
observation | ~30,000 | Unmeasured | Unmeasured | Field survey |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; An, H.; Kim, M.; Lim, H.; Kim, Y. A Simple Deposition Model for Debris Flow Simulation Considering the Erosion–Entrainment–Deposition Process. Remote Sens. 2022, 14, 1904. https://doi.org/10.3390/rs14081904
Lee S, An H, Kim M, Lim H, Kim Y. A Simple Deposition Model for Debris Flow Simulation Considering the Erosion–Entrainment–Deposition Process. Remote Sensing. 2022; 14(8):1904. https://doi.org/10.3390/rs14081904
Chicago/Turabian StyleLee, Seungjun, Hyunuk An, Minseok Kim, Hyuntaek Lim, and Yongseong Kim. 2022. "A Simple Deposition Model for Debris Flow Simulation Considering the Erosion–Entrainment–Deposition Process" Remote Sensing 14, no. 8: 1904. https://doi.org/10.3390/rs14081904
APA StyleLee, S., An, H., Kim, M., Lim, H., & Kim, Y. (2022). A Simple Deposition Model for Debris Flow Simulation Considering the Erosion–Entrainment–Deposition Process. Remote Sensing, 14(8), 1904. https://doi.org/10.3390/rs14081904