An Efficient Sparse Bayesian Learning STAP Algorithm with Adaptive Laplace Prior
Abstract
:1. Introduction
- We extend the hierarchical Bayesian model with real-value adaptive Laplace prior to the two-dimensional STAP complex-value application, which promotes sparsity to a greater extent.
- We develop a novel LRDSR processing scheme to accelerate CALM-SBL by eliminating the main bottleneck, i.e., the storage and inverse operation on the covariance matrix.
- Detailed comparative analyses of computational complexity, clutter suppression performance, and target detection performance between the proposed algorithms and other STAP methods are presented.
2. Signal Model and SR-STAP Problem Formulation
2.1. Signal Model
2.2. SR-STAP Problem Formulation
3. Proposed Algorithms
3.1. CALM-SBL-STAP Algorithm
Algorithm 1 Pseudocode for CALM-SBL-STAP algorithm |
Input: training samples X, dictionary matrix . Initialize: , , , . Set , . Step 1: While ; Update and using (22) and (33); Update using (29); Update using (30); Update using (32); If break end end Step 2: Estimate the CNCM by Step 3: Compute the space-time adaptive weight by (8) Step 4: Give the output of the CALM-SBL-STAP is |
3.2. LRDSR-STAP Scheme
4. Numerical Simulation
4.1. Computational Complexity Analysis
4.2. Clutter Suppression Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brennan, L.E.; Mallett, J.D.; Reed, I.S. Theory of Adaptive Radar. IEEE Trans. Aerosp. Electron. Syst. 1973, 9, 237–251. [Google Scholar] [CrossRef]
- Klemm, R. Principles of Space-Time Adaptive Processing; The Institution of Electrical Engineers: London, UK, 2002. [Google Scholar]
- Guerci, J.R. Space-Time Adaptive Processing for Radar; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Reed, I.S.; Mallett, J.D.; Brennan, L.E. Rapid Convergence Rate in Adaptive Arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, 10, 853–863. [Google Scholar] [CrossRef]
- Wang, H.; Cai, L. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 660–670. [Google Scholar] [CrossRef]
- Ward, J.; Steinhardt, A.O. Multiwindow Post-Doppler Space-Time Adaptive Processing. In Proceedings of the IEEE Seventh SP Workshop on Statistical Signal and Array Processing, Quebec, QC, Canada, 26–29 June 1994. [Google Scholar]
- Wang, Y.L.; Chen, J.W.; Bao, Z.; Peng, Y.N. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 70–81. [Google Scholar] [CrossRef]
- Shi, J.X.; Xie, L.; Cheng, Z.Y.; He, Z.S.; Zhang, W. Angle-Doppler Channel Selection Method for Reduced-Dimension STAP Based on Sequential Convex Programming. IEEE Commun. Lett. 2021, 25, 3080–3084. [Google Scholar] [CrossRef]
- Goldstein, J.S.; Reed, I.S. Reduced-rank adaptive filtering. IEEE Trans. Signal Process. 1997, 45, 492–496. [Google Scholar] [CrossRef]
- Goldstein, J.S.; Reed, I.S. Theory of partially adaptive radar. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 1309–1325. [Google Scholar] [CrossRef]
- Haimovich, A.M. The eigencanceler: Adaptive radar by eigenanalysis methods. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 532–542. [Google Scholar] [CrossRef]
- Ayoub, T.F.; Haimovich, A.M.; Pugh, M.L. Reduced-rank STAP for high PRF radar. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 953–962. [Google Scholar] [CrossRef]
- Wang, Y.L.; Liu, W.J.; Xie, W.C.; Zhao, Y.J. Reduced-rank space-time adaptive detection for airborne radar. Sci. China Inf. Sci. 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Wang, H.; Park, S.; Adve, R.; Koh, J.; Kim, K.; Zhang, Y.H.; Wicks, M.C.; Brown, R.D. A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. Antennnas Propagat. 2001, 49, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Melvin, W.L.; Showman, G.A. An approach to knowledge-aided covariance estimation. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1021–1042. [Google Scholar] [CrossRef]
- Wicks, M.C.; Rangaswamy, M.; Adve, R.; Hale, T.B. Space–time adaptive processing: A knowledge-based perspective for airborne radar. IEEE Signal Process. Mag. 2006, 23, 51–65. [Google Scholar] [CrossRef]
- Maria, S.; Fuchs, J. Application of the Global Matched Filter to Stap Data an Efficient Algorithmic Approach. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing, Toulouse, France, 14–19 May 2006. [Google Scholar]
- Yang, Z.C.; Li, X.; Wang, H.Q.; Jiang, W.D. On Clutter Sparsity Analysis in Space-Time Adaptive Processing Airborne Radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1214–1218. [Google Scholar] [CrossRef]
- Zhang, W.; He, Z.S.; Li, H.Y. Space time adaptive processing based on sparse recovery and clutter reconstructing. IET Radar Sonar Navig. 2019, 13, 789–794. [Google Scholar] [CrossRef]
- Sun, K.; Meng, H.; Wang, Y.; Wang, X. Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 2011, 91, 2222–2236. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Zhang, H.; Li, G.; Meng, H.; Wang, X. A novel STAP algorithm using sparse recovery technique. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Zou, H. Adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Kanitscheider, I.; Coen-Cagli, R.; Pouget, A. Origin of information-limiting noise correlations. Proc. Natl. Acad. Sci. USA 2015, 112, 6973–6982. [Google Scholar] [CrossRef] [Green Version]
- Pregowska, A. Signal Fluctuations and the Information Transmission Rates in Binary Communication Channels. Entropy 2021, 23, 92. [Google Scholar] [CrossRef]
- Zhang, M.L.; Qu, H.; Xie, X.R.; Kurths, J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing 2017, 219, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, H.; Li, D.; Wang, R.; Jin, C.; Yin, X.; Gao, S.; Mu, Q.; Xuan, L.; Cao, Z. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence. Sci. Rep. 2018, 8, 1124. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. 2001, 1, 211–244. [Google Scholar]
- Duan, K.Q.; Wang, Z.T.; Xie, W.C.; Chen, H.; Wang, Y.L. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Process. 2017, 11, 544–553. [Google Scholar] [CrossRef]
- Wang, Z.T.; Xie, W.C.; Duan, K.Q.; Wang, Y.L. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar. Signal Process. 2017, 130, 159–168. [Google Scholar] [CrossRef]
- Liu, K.; Wang, T.; Wu, J.; Chen, J. A Two-Stage STAP Method Based on Fine Doppler Localization and Sparse Bayesian Learning in the Presence of Arbitrary Array Errors. Sensors 2022, 22, 77. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian Compressive Sensing Using Laplace Priors. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef]
- Han, S.D.; Fan, C.Y.; Huang, X.T. A Novel STAP Based on Spectrum-Aided Reduced-Dimension Clutter Sparse Recovery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 213–217. [Google Scholar] [CrossRef]
- Guo, Y.D.; Liao, G.S.; Feng, W.K. Sparse Representation Based Algorithm for Airborne Radar in Beam-Space Post-Doppler Reduced-Dimension Space-Time Adaptive Processing. IEEE Access 2017, 5, 5896–5903. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, T.; Su, Y.Y. A fast and gridless STAP algorithm based on mixed-norm minimisation and the alternating direction method of multipliers. IET Radar Sonar Navig. 2021, 15, 1340–1352. [Google Scholar] [CrossRef]
- Ward, J. Space-Time Adaptive Processing for Airborne Radar; Lincoln Laboratory: Lexington, MA, USA, 1994. [Google Scholar]
- Maleki, A.; Anitori, L.; Yang, Z.; Baraniuk, R.G. Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP). IEEE Trans. Inf. Theory 2013, 59, 4290–4308. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, N.L.; Manchón, C.N.; Badiu, M.A. Sparse estimation using Bayesian hierarchical prior modeling for real and complex linear models. Signal Process. 2015, 115, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing. IEEE Trans. Signal Process. 2012, 60, 585–599. [Google Scholar] [CrossRef]
- Wipf, D.P.; Rao, B.D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process. 2007, 55, 3704–3716. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, H.; Li, J.; Chen, F. Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation. IEEE Signal Process. Lett. 2021, 28, 1744–1748. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programing, Version 2.0 Beta. Available online: http://cvxr.com/cvx (accessed on 14 September 2013).
- Tropp, J.A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50, 2231–2242. [Google Scholar] [CrossRef] [Green Version]
- Tropp, J.A. Algorithms for simultaneous sparse approximation, part II: Convex relaxation. Signal Process. 2006, 86, 589–602. [Google Scholar] [CrossRef]
- Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [Google Scholar] [CrossRef]
- Liu, W.J.; Liu, J.; Hao, C.P.; Gao, Y.C.; Wang, Y.L. Multichannel adaptive signal detection: Basic theory and literature review. Sci. China Inf. Sci. 2022, 65, 121301. [Google Scholar] [CrossRef]
Algorithm | Estimation of R | Weight Calculation |
---|---|---|
M-CVX | ||
M-OMP | ||
M-FOCUSS | ||
M-SBL | ||
M-FCSBL | ||
CALM-SBL | ||
LRDSR-CALM-SBL |
Algorithm | Running Time |
---|---|
M-CVX | 868.7062 s |
M-OMP | 0.0216 s |
M-FOCUSS | 256.2815 s |
M-SBL | 288.9466 s |
M-FCSBL | 40.8802 s |
CALM-SBL | 10.1729 s |
LRDSR-CALM-SBL (K = 1) | 0.0051 s |
LRDSR-CALM-SBL (K = 3) | 0.1319 s |
Algorithm | OPT | M-SBL | CALM-SBL | |
---|---|---|---|---|
Normalized Doppler Frequency | ||||
0.06 | −1.369 dB | −2.097 dB | −1.375 dB | |
0.2 | −0.174 dB | −0.229 dB | −0.183 dB | |
0.49 | −0.069 dB | −0.087 dB | −0.074 dB |
Algorithm | OPT | M-SBL | CALM-SBL | |
---|---|---|---|---|
Training Sample Number | ||||
2 | −0.252 dB | −0.879 dB | −1.453 dB | |
4 | −0.252 dB | −0.367 dB | −0.299 dB | |
10 | −0.252 dB | −0.356 dB | −0.260 dB |
Algorithm | OPT | CALM-SBL | LRDSR-CALM-SBL | |
---|---|---|---|---|
Normalized Doppler Frequency | ||||
0.125 | −0.373 dB | −0.381 dB | −4.223 dB | |
0.375 | −0.080 dB | −0.092 dB | −3.035 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Wang, T.; Wang, D.; Liu, K. An Efficient Sparse Bayesian Learning STAP Algorithm with Adaptive Laplace Prior. Remote Sens. 2022, 14, 3520. https://doi.org/10.3390/rs14153520
Cui W, Wang T, Wang D, Liu K. An Efficient Sparse Bayesian Learning STAP Algorithm with Adaptive Laplace Prior. Remote Sensing. 2022; 14(15):3520. https://doi.org/10.3390/rs14153520
Chicago/Turabian StyleCui, Weichen, Tong Wang, Degen Wang, and Kun Liu. 2022. "An Efficient Sparse Bayesian Learning STAP Algorithm with Adaptive Laplace Prior" Remote Sensing 14, no. 15: 3520. https://doi.org/10.3390/rs14153520
APA StyleCui, W., Wang, T., Wang, D., & Liu, K. (2022). An Efficient Sparse Bayesian Learning STAP Algorithm with Adaptive Laplace Prior. Remote Sensing, 14(15), 3520. https://doi.org/10.3390/rs14153520