Mapping Dominant Tree Species of German Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.2. Reference Data from NFI
2.3. Machine-Learning Model for Classification
2.4. Additional Plausibility Checks
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. European Forest Ecosystems: State and Trends; EEA Report No 5/2016; European Environment Agency Publications Office: Luxembourg, 2016. [Google Scholar]
- Ergebnisse der Waldzustandserhebung 2020; BMEL: Bonn, Germany, 2021; 72p. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/ergebnisse-waldzustandserhebung-2020.pdf?__blob=publicationFile&v=7 (accessed on 28 April 2022).
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- BMEL. The Forests in Germany. Selected Results of the Third National Inventory; BMEL: Berlin, Germany, 2018; 56p. Available online: https://www.bmel.de/SharedDocs/Downloads/EN/Publications/ForestsInGermany-BWI.pdf?__blob=publicationFile&v=4 (accessed on 28 April 2022).
- European Commission. Proposal for a Forest Observation, Reporting and Data Collection Framework. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13396-EU-forests-new-EU-Framework-for-Forest-Monitoring-and-Strategic-Plans_en (accessed on 28 April 2022).
- Zeug, G.; Geltendorf, T.; Immitzer, M.; Atzberger, C. Machbarkeitsstudie zur Nutzung von Satellitenfernerkundung (Copernicus) für Zwecke der Ableitung ökologischer Belastungsgrenzen und der Verifzierung von Indikatoren der Deutschen Anpassungsstrategie an den Klimawandel; Umweltbundesamt: Dessau-Roßlau, Germany, 2018.
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Pekkarinen, A.; Reithmaier, L.; Strobl, P. Pan-European forest/non-forest mapping with Landsat ETM+ and Corine land cover 2000 data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 171–183. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service (CLMS). High Resolution Land Cover Characteristics. Tree-Cover/Forest and Change 2015–2018. User Manual. Available online: https://land.copernicus.eu/user-corner/technical-library/forest-2018-user-manual.pdf (accessed on 16 May 2022).
- European Commission, Joint Research Centre. European Atlas of Forest Tree Species; Houston Durrant, T., De Rigo, D., Mauri, A., Caudullo, G., San-Miguel-Ayanz, J., Eds.; Publications Office: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Nink, S.; Hill, J.; Stoffels, J.; Buddenbaum, H.; Frantz, D.; Langshausen, J. Using Landsat and Sentinel-2 Data for the Generation of Continuously Updated Forest Type Information Layers in a Cross-Border Region. Remote Sens. 2019, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests 2015, 6, 1982–2013. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, A.; Lindberg, E.; Reese, H.; Olsson, H. Tree species classification using Sentinel-2 imagery and Bayesian inference. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102318. [Google Scholar] [CrossRef]
- Bjerreskov, K.S.; Nord-Larsen, T.; Fensholt, R. Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data. Remote Sens. 2021, 13, 950. [Google Scholar] [CrossRef]
- Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the potential of land surface phenology and seasonal cloud free composites of one year of Sentinel-2 imagery for tree species mapping in a mountainous region. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102208. [Google Scholar] [CrossRef]
- Lim, J.; Kim, K.-M.; Kim, E.-H.; Jin, R. Machine Learning for Tree Species Classification Using Sentinel-2 Spectral Information, Crown Texture, and Environmental Variables. Remote Sens. 2020, 12, 2049. [Google Scholar] [CrossRef]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 276, 112743. [Google Scholar] [CrossRef]
- Breidenbach, J.; Waser, L.T.; Debella-Gilo, M.; Schumacher, J.; Rahlf, J.; Hauglin, M.; Puliti, S.; Astrup, R. National mapping and estimation of forest area by dominant tree species using Sentinel-2 data. Can. J. For. Res. 2021, 51, 365–379. [Google Scholar] [CrossRef]
- Waser, L.T.; Rüetschi, M.; Psomas, A.; Small, D.; Rehush, N. Mapping dominant leaf type based on combined Sentinel-1/-2 data—Challenges for mountainous countries. ISPRS J. Photogramm. Remote Sens. 2021, 180, 209–226. [Google Scholar] [CrossRef]
- Lechner, M.; Dostálová, A.; Hollaus, M.; Atzberger, C.; Immitzer, M. Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve. Remote Sens. 2022, 14, 2687. [Google Scholar] [CrossRef]
- Ma, M.; Liu, J.; Liu, M.; Zeng, J.; Li, Y. Tree Species Classification Based on Sentinel-2 Imagery and Random Forest Classifier in the Eastern Regions of the Qilian Mountains. Forests 2021, 12, 1736. [Google Scholar] [CrossRef]
- Wan, H.; Tang, Y.; Jing, L.; Li, H.; Qiu, F.; Wu, W. Tree Species Classification of Forest Stands Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 144. [Google Scholar] [CrossRef]
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. [Google Scholar] [CrossRef]
- Thonfeld, F.; Gessner, U.; Holzwarth, S.; Kriese, J.; da Ponte, E.; Huth, J.; Kuenzer, C. A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sens. 2022, 14, 562. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying Impacts of the 2018 Drought on European Ecosystems in Comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency (ESA). Sentinel-2 User Handbook; ESA Standard Document; ESA: Paris, France, 2015; 64p. [Google Scholar]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–13 September 2017; p. 10427. [Google Scholar]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
- Pu, R. Mapping Tree Species Using Advanced Remote Sensing Technologies: A State-of-the-Art Review and Perspective. J. Remote Sens. 2021, 2021, 9812624. [Google Scholar] [CrossRef]
- Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die dritte Bundesaldinventur (BWI 2012). Inventur- und Auswertemethoden; Eberswalde; Thünen-Institut für Waldökosysteme: Eberswalde, Germany, 2017; p. 124.
- Welle, T.; Sturm, K.; Bohr, Y. Der Alternative Waldzustandsbericht 2018; Naturwald Akademie: Lübeck, Germany, 2018; p. 263. Available online: https://naturwald-akademie.org/wp-content/uploads/2020/06/Alternativer-Waldzustandsbericht_Stand_24_04_2018_1.pdf (accessed on 16 May 2022).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ma, Y.; Quackenbush, L.J.; Zhen, Z. Estimation of Individual Tree Biomass in Natural Secondary Forests Based on ALS Data and WorldView-3 Imagery. Remote Sens. 2022, 14, 271. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef] [PubMed]
- Samat, A.; Li, E.; Wang, W.; Liu, S.; Lin, C.; Abuduwaili, J. Meta-XGBoost for Hyperspectral Image Classification Using Extended MSER-Guided Morphological Profiles. Remote Sens. 2020, 12, 1973. [Google Scholar] [CrossRef]
- Rousset, G.; Despinoy, M.; Schindler, K.; Mangeas, M. Assessment of Deep Learning Techniques for Land Use Land Cover Classification in Southern New Caledonia. Remote Sens. 2021, 13, 2257. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Lee, J. Assessment of Machine Learning Algorithms for Land Cover Classification Using Remotely Sensed Data. Sens. Mater. 2021, 33, 3885–3902. [Google Scholar] [CrossRef]
- Łoś, H.; Sousa Mendes, G.; Cordeiro, D.; Grosso, N.; Costa, H.; Benevides, P.; Caetano, M. Evaluation of Xgboost and Lgbm Performance in Tree Species Classification with Sentinel-2 Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5803–5806. [Google Scholar] [CrossRef]
- Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 2017, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 2017, 12, e0177678. [Google Scholar] [CrossRef]
- Qiuming, Z. On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset. Pattern Recognit. Lett. 2020, 136, 71–80. [Google Scholar] [CrossRef]
- Kurth, H. Forsteinrichtung. Nachhaltige Regelung des Waldes; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1994; p. 592. [Google Scholar]
- Xi, Y.; Ren, C.; Tian, Q.; Ren, Y.; Dong, X.; Zhang, Z. Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7589–7603. [Google Scholar] [CrossRef]
- Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- SaarForst Landesbetrieb. Staatswaldinventur des Saarlandes 2018. Ein Faktencheck. 2018. Available online: https://www.saarland.de/saarforst/DE/service/publikationen/publikationen/publ_staatswaldinventur.pdf?__blob=publicationFile&v=1 (accessed on 16 May 2022).
- Nabuurs, G.J.; Harris, N.; Sheil, D.; Palahi, M.; Chirici, G.; Boissière, M.; Fay, C.; Reiche, J.; Valbuena, R. Glasgow forest declaration needs new modes of data ownership. Nat. Clim. Chang. 2022, 12, 415–417. [Google Scholar] [CrossRef]
- Jucker, T.; Fischer, F.; Chave, J.; Coomes, D.; Caspersen, J.; Ali, A.; Loubota Panzou, G.J.; Feldpausch, T.; Falster, D.; Usoltsev, V.; et al. Tallo Database (1.0.0). Zenodo 2022. Available online: https://zenodo.org/record/6637599 (accessed on 13 June 2022). [CrossRef]
- Mehr Fortschritt wagen. Bündnis für Freiheit, Gerechtigkeit und Nachhaltigkeit. Koalitionsvertrag zwischen SPD, Bündnis 90/Die Grünen und FDP. Berlin, SPD, Die Grünen, FDP. 2022. p. 144. Available online: https://www.spd.de/fileadmin/Dokumente/Koalitionsvertrag/Koalitionsvertrag_2021-2025.pdf (accessed on 28 April 2022).
Dominant Tree Species | F1-Score Range |
---|---|
Pine | 0.79–0.92 |
Spruce | 0.88–0.96 |
Douglas fir | 0.69–0.74 |
Larch | 0.75 |
Beech | 0.83–0.87 |
Oak | 0.76–0.78 |
Other broadleaf | 0.60–0.80 |
Dominant Tree Species | Pine | Spruce | Douglas Fir | Larch | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Federal State | NFI | DTS | Diff | NFI | DTS | Diff | NFI | DTS | Diff | NFI | DTS | Diff |
Baden-Wurttemberg | 5.8 | 7.6 | 1.8 | 41.4 | 46.7 | 5.3 | 3.3 | 2.9 | −0.4 | 1.7 | 0.0 | −1.7 |
Bavaria | 16.8 | 17.3 | 0.5 | 43.2 | 56.0 | 12.8 | 0.8 | 0.0 | −0.8 | 2.1 | 0.0 | −2.1 |
Brandenburg and Berlin | 70.1 | 72.4 | 2.3 | 1.8 | 3.2 | 1.4 | 1.0 | 0.2 | −0.8 | 1.2 | 0.8 | −0.4 |
Hessen | 9.3 | 8.4 | −0.9 | 21.8 | 28.3 | 6.5 | 3.6 | 1.8 | −1.8 | 4.6 | 0.3 | −4.3 |
Mecklenburg Western Pomerania | 36.7 | 38.5 | 1.8 | 7.7 | 8.5 | 0.9 | 1.4 | 0.5 | −0.9 | 3.1 | 1.0 | −2.1 |
Lower Saxony | 28.6 | 33.5 | 4.9 | 16.8 | 18.8 | 2.0 | 2.4 | 1.1 | −1.3 | 4.7 | 0.9 | −3.7 |
Northrhine-Westphalia | 6.7 | 11.6 | 4.9 | 29.5 | 30.0 | 0.5 | 1.7 | 1.0 | −0.7 | 3.3 | 1.1 | −2.2 |
Rhineland Palatinate | 9.9 | 9.5 | −0.4 | 20.2 | 26.9 | 6.8 | 6.4 | 5.5 | −0.9 | 2.4 | 0.1 | −2.3 |
Saarland | 5.1 | 2.4 | −2.7 | 12.4 | 22.7 | 10.3 | 3.7 | 5.2 | 1.5 | 2.5 | 0.0 | −2.5 |
Saxony | 28.2 | 27.9 | −0.3 | 34.5 | 44.7 | 10.2 | 0.2 | 0.1 | −0.1 | 3.4 | 0.5 | −2.9 |
Saxony-Anhalt | 42.6 | 48.0 | 5.4 | 9.9 | 12.3 | 2.4 | 0.5 | 0.3 | −0.2 | 2.4 | 0.9 | −1.5 |
Schleswig-Holstein | 7.7 | 12.9 | 5.2 | 17.4 | 17.9 | 0.5 | 2.0 | 1.4 | −0.6 | 7.4 | 0.8 | −6.6 |
Thruringia | 14.1 | 23.3 | 9.2 | 38.5 | 37.5 | −1.0 | 0.4 | 0.1 | −0.3 | 3.2 | 0.2 | −3.0 |
Hamburg and Bremen | 10.6 | 26.5 | 15.9 | 2.2 | 10.7 | 8.5 | 0.9 | 0.5 | −0.4 | 2.4 | 1.2 | −1.2 |
Dominant Tree Species | Beech | Oak | Other Broadleaf | ||||||
---|---|---|---|---|---|---|---|---|---|
Federal State | NFI | DTS | Diff | NFI | DTS | Diff | NFI | DTS | Diff |
Baden-Wurttemberg | 21.5 | 19.0 | −2.5 | 7.5 | 8.5 | 1.0 | 17.1 | 15.3 | −1.9 |
Bavaria | 13.6 | 13.3 | −0.3 | 6.6 | 3.6 | −3.0 | 14.7 | 9.8 | −4.9 |
Brandenburg and Berlin | 3.3 | 3.0 | −0.3 | 6.6 | 4.6 | −2.0 | 14.6 | 15.8 | 1.2 |
Hesse | 30.1 | 31.9 | 1.8 | 13.2 | 14.2 | 1.0 | 14.2 | 15.2 | 1.0 |
Mecklenburg Western Pomerania | 12.3 | 12.2 | 0.1 | 9.4 | 6.6 | −2.8 | 27.2 | 32.6 | 5.4 |
Lower Saxony | 13.5 | 13.0 | −0.5 | 12.3 | 9.8 | −2.5 | 19.1 | 22.8 | 3.7 |
Northrhine-Westphalia | 18.3 | 16.7 | −1.6 | 16.0 | 16.3 | 0.3 | 20.7 | 23.3 | 2.6 |
Rhineland Palatinate | 21.8 | 23.3 | 1.5 | 20.2 | 18.0 | −2.2 | 16.8 | 16.6 | −0.2 |
Saarland | 19.8 | 22.9 | 3.1 | 19.8 | 16.7 | −3.1 | 34.4 | 30.1 | −4.3 |
Saxony | 4.2 | 4.5 | 0.3 | 8.6 | 5.5 | −3.1 | 18.7 | 16.8 | −1.9 |
Saxony-Anhalt | 6.7 | 9.3 | 2.6 | 12.3 | 8.5 | −3.8 | 21.2 | 20.7 | −0.5 |
Schleswig-Holstein | 19.3 | 12.2 | −7.0 | 15.8 | 16.4 | 0.6 | 28.9 | 38.4 | 9.5 |
Thuringia | 19.8 | 21.5 | 1.7 | 6.8 | 7.9 | 1.1 | 15.5 | 9.5 | −5.9 |
Hamburg and Bremen | 11.2 | 2.8 | −8.4 | 18.9 | 11.5 | −7.4 | 44.4 | 46.8 | 2.5 |
Pine | Spruce | Douglas Fir | Larch | Beech | Oak | Other Broadleaf | |
---|---|---|---|---|---|---|---|
Pearson’s correlation | 0.968 | 0.961 | 0.915 | 0.205 | 0.918 | 0.882 | 0.932 |
p-Value | 0.000 | 0.000 | 0.000 | 0.481 | 0.000 | 0.000 | 0.000 |
Mann–Whitney-U | 84.00 | 79.00 | 68.00 | 0.00 | 90.00 | 77.00 | 98.00 |
Z | −0.643 | −0.873 | −1.378 | −4.503 | −09.368 | −0.965 | 0.00 |
p-Value | 0.541 | 0.401 | 0.178 | 0.00 | 0.734 | 0.352 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welle, T.; Aschenbrenner, L.; Kuonath, K.; Kirmaier, S.; Franke, J. Mapping Dominant Tree Species of German Forests. Remote Sens. 2022, 14, 3330. https://doi.org/10.3390/rs14143330
Welle T, Aschenbrenner L, Kuonath K, Kirmaier S, Franke J. Mapping Dominant Tree Species of German Forests. Remote Sensing. 2022; 14(14):3330. https://doi.org/10.3390/rs14143330
Chicago/Turabian StyleWelle, Torsten, Lukas Aschenbrenner, Kevin Kuonath, Stefan Kirmaier, and Jonas Franke. 2022. "Mapping Dominant Tree Species of German Forests" Remote Sensing 14, no. 14: 3330. https://doi.org/10.3390/rs14143330