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Abstract: The knowledge of tree species distribution at a national scale provides benefits for forest
management practices and decision making for site-adapted tree species selection. An accurate
assignment of tree species in relation to their location allows conclusions about potential resilience or
vulnerability to biotic and abiotic factors. Identifying areas at risk helps the long-term strategy of
forest conversion towards a natural, diverse, and climate-resilient forest. In the framework of the
national forest inventory (NFI) in Germany, data on forest tree species are collected in sample plots,
but there is a lack of a full coverage map of the tree species distribution. The NFI data were used to
train and test a machine-learning approach that classifies a dense Sentinel-2 time series with the result
of a dominant tree species map of German forests with seven main tree species classes. The test of the
model’s accuracy for the forest type classification showed a weighted average F1-score for deciduous
tree species (Beech, Oak, Larch, and Other Broadleaf) between 0.77 and 0.91 and for non-deciduous
tree species (Spruce, Pine, and Douglas fir) between 0.85 and 0.94. Two additional plausibility checks
with independent forest stand inventories and statistics from the NFI show conclusive agreement.
The results are provided to the public via a web-based interactive map, in order to initiate a broad
discussion about the potential and limitations of satellite-supported forest management.

Keywords: forest type; forestry; tree species map; machine learning; Sentinel-2

1. Introduction

About one third of Germany is covered with forest and thus ranks among the most
forest-rich countries in the European Union [1]. The information about forest characteristics
and the forest status is very fragmented in Germany and due to a lack of open access
information at a national level, science-based evidence in support of national strategies
for sustainable forest management, forest protection, and restoration is still limited. The
effect of the three drought years in 2018, 2019, and 2020 had strong negative impacts on
German forests [2,3] and revealed the need for more accurate information for better forest
management and protection. Especially in the light of climate change, detailed information
on different forest types, such as tree species composition, their occurrence, and distribution,
is important to adapt forest management practices. Currently, nationwide information such
as the distribution of the main tree species are spatially not explicit since they can only be
derived on the basis of the sample points from the national forest inventory (NFI), which is
conducted every ten years [1,2]. The four main tree species groups Spruce (25.4 percent),
Pine (22.3 percent), Beech (15.4 percent), and Oak (10.4 percent) cover together 73.5 percent
of the stand area in Germany [4].

As a central pillar of the European Green Deal, the New EU Forest Strategy for
2030 foresees actions for strengthening forest protection and restoration, enhancing sus-
tainable forest management, and improving the monitoring of forests. In regard to forest
monitoring, the strategy also makes a legislative proposal for a forest observation, reporting,
and data collection framework, which aims at developing an EU-wide forest observation
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framework to provide open access to detailed, accurate, regular, and timely information
on the condition and management of forests [5]. Earth observation is a key technology in
this regard since it allows for ecosystem monitoring and mapping over large areas [6–8].
Remote sensing-based forest information is produced by the Copernicus land monitoring
service (CLMS) with the aim of offering information concerning the environment to all
European citizens (Website: https://www.copernicus.eu/en/copernicus-services/land,
accessed on 16 May 2022). The service provides various forest-related data such as Corine
land cover classification which is divided into three classes (deciduous forest, coniferous
forest, and mixed forest) with a spatial resolution of one hectare per pixel [9]. In addition,
high-resolution layers including forest cover and dominant leaf type (broadleaved or conif-
erous) are available with a spatial resolution of 20 m [10]. The Joint Research Center (JRC)
offers a European Atlas of Forest Tree Species with a resolution of 1 km2 based on remote
sensing data and statistical interpolation approaches [11]. However, all these existing data
are either suffering from low spatial detail or from missing information depth which limits
the use of these data to inform management and support ecological-assessment decisions
at national and subnational scales [11]. Recent studies therefore examined the feasibility of
deriving detailed forest information such as forest type, tree species composition, and stand
development stages based on high-resolution satellite data and new approaches in machine
learning [6,12–15]. For the German federal state of Rhineland-Palatinate, such an approach
resulted in tree species maps comparable with ground-truth-based inventory maps [12,13].
In a study that aimed at first experiences on Sentinel-2-based tree species classifications
for an area in Bavaria, seven different deciduous and coniferous tree species were differ-
entiated at 10 m spatial resolution using a supervised random forest classifier [14]. The
study confirmed the capabilities to produce reliable tree species maps, although the full
potential of Sentinel-2 data, especially the temporal information, was not considered [13,14].
Enhanced classification results could be obtained by using multitemporal Sentinel-2 data
to derive tree species [16–23]. In this context, the red-edge and SWIR (short-wave infrared)
bands were especially important for capturing the phenological differences between the
tree species [16,21]. Comparative results were provided by a study from China, which con-
cluded that freely accessible multispectral remote sensing data have tremendous potential
in forest type identification in support of monitoring and management of forest ecological
resources at regional or global scales [15]. While these studies demonstrated suitable classifi-
cation accuracies for tree species, the transfer to larger areas presents a significant challenge
mainly due to fragmented or non-available reference data [6,13]. Only a few studies tried to
classify larger areas, e.g., at country level. Bjerreskov et al. [18] and Breidenbach et al. [24]
aimed at classifying forested areas, forest types, and tree species groups using NFI data at a
country scale. Some studies used additional input data such as Sentinel-1, digital terrain
models, aerial images, or light detection and ranging (LiDAR) data [18,25–28]. Another
previously limiting factor for a large-scale national characterization of forests via remote
sensing has been the large amount of data that need to be processed [6]. This might be
one reason for the fact that the majority of previous forest-related remote sensing studies
were conducted at a regional scale [29]. With the constellation of the Sentinel satellites and
an open data policy, the European Copernicus program is an important driver of digital
transformation in ecosystem management. The growing satellite data availability, together
with efficient and performant data-processing capacities and automated machine-learning
frameworks, make it possible to perform more complex calculations on these data for
large-scale applications, which was thought impossible just a decade ago.

The aim of this study was to assess the potential of Sentinel-2 data to derive the
dominant tree species for forests in Germany, since no full-coverage, high-resolution, and
open access tree species distribution map exists yet. By using Sentinel-2 time series, the
dominant tree species were classified by their species-dependent spectral–phenological
features, by a machine-learning approach trained through reference data from the NFI.
The mapping of the dominant tree species focused on the economically most important
tree species in Germany, whereby seven species classes were differentiated. The final
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dominant tree species map is provided open access via a web-map application to allow
interactions with the public and to stimulate cooperation with the science community to
further improve the approach in the future.

In the present publication, we present all input data for the classification of the
dominant tree species of German forests. We describe how the NFI data were used as
reference data to train and test the machine-learning approach and how additional forest
stand inventory data from local forestry offices served for validation and for plausibility
checks of the final dominant tree species map.

2. Materials and Methods
2.1. Satellite Data

All available Sentinel-2 images covering Germany for an 11-month period (1 March
2017 and 30 November 2017) were used. The year 2017 was chosen because the droughts in
2018, 2019 and 2020 caused anomalies in species-dependent phenology as well as severe
forest damages in Germany [30,31] which would deteriorate the classification of tree species
if data from more recent years would have been used. In addition, a pre-drought dominant
tree species map of 2017 allows for a species-dependent drought impact assessment. The
multispectral Sentinel-2 data provide spectral information in the visible, red-edge, near-
infrared (NIR), and short-wave infrared (SWIR) part of the electromagnetic spectrum [32].
The ten spectral bands with 10 and 20 m spatial resolution, which provide valuable data for
vegetation and forest monitoring, were considered (visible bands 2, 3 and 4; red-edge bands
5, 6 and 7; NIR bands 8 and 8A; as well as the SWIR bands 11 and 12). Level-1C images
were acquired and first transformed into corrected bottom-of-atmosphere reflectance data
utilizing Sen2Cor [33]. The automated processing chain then resampled the six bands
with 20 m spatial resolution to match the four 10 m spatial resolution bands. For each
image, the normalized difference vegetation index (NDVI) was calculated and added as an
additional band to each 10-band image stack. All images were then grouped per month
and per Sentinel-2 tile and monthly composites were generated. Thereby, the composite
is created by assessing pixel-by-pixel the maximum NDVI value per month, whereby the
pixel reflectance values from the respective image are then assigned into the composite. The
result is a 10-band reflectance composite per month (bands listed above) and a maximum
NDVI band as band 11. This maximum NDVI-based image composition has the advantage
of preferring unclouded pixels in a time series over vegetated areas which minimizes cloud
cover. Few remaining clouded areas (pixels in areas that were clouded in all images in
a month) were masked afterwards. The resulting nine monthly composites (March to
November) were finally stacked per Sentinel-tile, where each image stack had 99 bands
(9 times 10 reflectance bands and 9 NDVI bands) that were later used as input variables
for the classification model. The complete set of data stacks covering Germany had an
approximate total size of 1.6 TB. This spectral time series was used for the classification, as it
reflects the species-dependent phenology, which is a main characteristic for differentiating
forest tree species using remote sensing data [34–36].

2.2. Reference Data from NFI

The availability, quality, timeliness and extent of forest reference data are crucial for
the quality of the dominant tree species classification results. In Germany, all federal states
are responsible for their forest information assessment, but unfortunately no common data
framework exists between the federal states. The only homogenous reference data set is
the national forest inventory (NFI). The NFI is a terrestrial random inventory at permanent
sample plots that is conducted every ten years (in 2012, the third NFI was completed). A
total of 60,000 sample plots are spread over Germany in a representative grid, while the
grid size can vary between federal states. At the grid nodes, the sample plots are located.
Each sample plot is defined by a square with a side length of 150 m, where at each of the
corners the collection of terrain, stand and tree characteristics are recorded [4,37].
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The exact locations of the permanent NFI plots are not made public, to preserve sample
anonymity. They are spatially flawed and only represented in the INSPIRE 1 km × 1 km
grid (https://bwi.info/Download/de/BWI-Basisdaten/_Hinweise_BWI-Basisdaten.pdf,
accessed on 16 May 2022). These nonspatial explicit data hinder the use as training and
test data for classification of high-resolution satellite data, since no spatial link between
the satellite data and the plot information can be established. In this study, to make the
data suitable as reference data by keeping the confidentiality of the accurate NFI plot
locations, the responsible institution of the NFI, the Institute of Forest Ecosystems of the
Thünen-Institute, extracted all pixel values at the accurate NFI plot coordinates from a
multitemporal Sentinel-2 image stack that we provided. We then received a table that
contains the extracted remotely sensed data linked with the plot attributes. This specific
data-sharing agreement essentially provided this study with access to the data with their
precise locations without anyone accessing the confidential location information.

The individual tree species in the NFI database were aggregated into main tree species
categories, for example common spruce, Omorica spruce, Sitka spruce, Black spruce, and
blue Spruce were categorized into spruce trees [37,38]. For selecting the reference data set
used for the classification, the number of trees recorded in each plot, the tree species and the
stand type were considered. Using the information recorded in each plot, we distinguished
between mixed stands and more pure stands, whereas pure stands were here defined by a
share of the leading tree species of equal or greater than 80 percent. As soon as other tree
species reach a combined share of more than 20 percent, the corresponding stand is defined
as a mixed stand [38]. In order to retain the highest representativeness of the reference data
for the different tree species and to minimize potential location inaccuracies of the reference
data, only the defined pure stands were used as training data. In addition, the density of
the stand was considered by using only those plots with a certain tree density, which was
defined by a minimum number of trees of the respective tree species equal or greater than
4. Finally, the reference data based on NFI data contain the following attributes: sample
plot attribute, number of trees, tree species and number, and stand type.

In a last step, all remaining pure stand samples were investigated in regard to their
total sample size, since only those tree species could be considered which have a minimum
number of samples required for a robust training and testing of the classification. Figure 1
shows the distribution of samples per tree species, which were considered in this study.
The tree species that could be considered were limited through the sample sizes in the
reference data, to spruce, pine, douglas fir and larch as conifers and beech, oak and other
broadleaf trees as broadleaf species.
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2.3. Machine-Learning Model for Classification

The XGBoost python package was used for an efficient implementation of the gradient-
boosted trees machine-learning algorithm to classify the Sentinel-2 time series image stacks.
XGBoost belongs to a class of ensemble-learning algorithms in which weak models are built
sequentially by minimizing errors from previous models using gradient descent. The use
of a regularization term reduces overfitting and XGBoost can even naturally handle sparse
data, e.g., missing data values, by learning default classification directions in decision trees
that are taken in case a feature value is missing. It was shown to perform well on the
classification of tabular data in machine-learning competitions and its flexible and efficient
implementation that allows it to run on a CPU, a GPU, or on distributed systems has added
to its popularity [39]. As the pixel-based classification of satellite imagery can also be viewed
as a task that requires the classification of tabular data, XGBoost is being increasingly used
in the field of remote sensing. Fields of application include measuring air pollution [40],
individual tree biomass estimation [41], forest aboveground-biomass estimation using
Landsat 8 and Sentinel-1 data [42,43], hyperspectral image classification [44], land use and
land cover classification [45,46], and tree species classification from Sentinel-2 data [47].

In order to train and test the machine-learning model, the tabular NFI reference data
were used, which contain the 99 spectral information from the satellite data and the domi-
nant tree species at the sampling locations of the NFI. To account for regional differences in
forest ecosystems and thus for different phenologies mainly due to mountainous terrain,
four regional models were trained and tested through spatially splitting the reference data.
A criterion for each regional model was the presence of sufficient reference data for the
different tree types. In each regional model, a hierarchical classification was conducted,
whereby non-forest and forest areas were differentiated in the first step. To create this basic
forest mask, the High-Resolution Layer (HRL) Forest from the Copernicus land monitoring
service was additionally used for generating training data. In the second step, deciduous
and non-deciduous forest types were classified within the forest mask and the dominant
tree species were classified within the forest type mask in a third step. In each regional
model, the reference data from the NFI were split into 70% training and 30% test data.
Samples with the same area ID (i.e., taken from the same reference area) might be correlated,
so we ensured that these samples were not mixed as training and test data, with the result
of having a more independent test data set. In order to account for the different scale of the
band reflectance values and the NDVI values, input features were standardized by remov-
ing the mean and scaling to unit variance using Scikit-learn’s StandardScaler. The mean and
the variance were estimated based on the training data before model training. Furthermore,
during model training, an automatic hyperparameter tuning was applied separately for
each regional model using Scikit-learn’s implementation of random search with 5-fold
cross-validation to evaluate the performance of each model for the specific hyperparameter
configurations. In total, 45 configurations were tested, and the best-performing model with
regard to a multiclass generalization of the Matthew’s correlation coefficient provided by
Scikit-learn was selected. The Matthew’s correlation coefficient (MCC) is widely used, for
example, in the field of computational biology, and is considered to perform well as a sta-
tistical score even for imbalanced data sets [48,49]. However, there are also authors arguing
that the MCC is not a suitable metric for evaluating classifications based on imbalanced
data [50]. Since hyperparameter tuning was performed separately for each of the regional
models, the tuning process resulted in different hyperparameter values that were used in
the final models. For the prediction step, the tuned and trained models were applied to
each pixel of the Sentinel-2 stacks for predicting the class probabilities.

Figure 2 summarizes the schematic workflow of the methodology.
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2.4. Additional Plausibility Checks

Besides the quantitative validation of the classification via the test data, two additional
plausibility checks were conducted by using completely independent data sets. This
allowed for an additional assessment of the limitations of the classification approach.
First, forest stand inventory data from four different communal forests in Germany were
used. Central European forestry is characterized by intensive and small-parcel use of the
forest areas. For sustainable forest management, sufficient information is needed which
is mainly collected through communal forest stand inventories which are carried out
every ten years to record for example the dominant tree species type within the stand.
Various information regarding the forest stand area is recorded such as size, location,
tree type, age and stock volume. This information is based on individual estimations
from forest managers supplemented by measurements at stand level. Hence, the accuracy
of forest stand inventory data is subjective since it is dependent on the expertise of the
forest manager [51]. For the plausibility check, the dominant tree species information
per management unit was used from this data source to compare with the dominant tree
species classification.

As a second plausibility check, a comparison between the shares of the dominant
tree species as derived from the point-based NFI data with the shares of the classification
was carried out. A direct comparison of the areas is not possible, since the NFI sample
point data do not allow area calculations. Therefore, a comparison of area percentages
(shares) covered by each tree species per federal state was carried out to assess the variation
between the classification and the NFI in percentages. In order to statistically test these
area differences, two analyses were carried out. First, a correlation analysis, and second, a
Mann–Whitney-U-Test was calculated.

3. Results

The final dominant tree species map of Germany is shown in Figure 3. The map reflects
the large-scale general pattern of the dominant tree species in Germany, with the spruce
dominating mountainous and low mountainous areas, the pine belt in the northeast, and
the more broadleaved tree dominating the area in the central and western part of Germany.
It also reflects the small-scale pattern, the heterogeneity, and diversity of tree species across
short distances, as displayed in the zoomed map examples.
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The test of the model accuracy for the forest type classification (deciduous vs. non-
deciduous) showed a weighted average F1-score of 0.95. The regional classifications
of the deciduous tree species (including beech, oak, other broadleaved trees and larch)
showed weighted average F1-scores between 0.77 and 0.91, while the classifications of non-
deciduous tree species (spruce, pine and douglas fir) showed weighted average F1-scores
between 0.85 and 0.94, depending on the regional model. Table 1 additionally lists species-
dependent observed F1-score ranges, which range from reasonable to very good F1-scores.
Douglas fir and larch are those species with the lowest F1-scores, while the highest scores
were achieved for spruce, beech and pine. The lower F1-scores of the classes larch and
douglas fir correspond with the lowest number of available samples in the reference data
(Figure 1). The still reasonable F1-scores for these classes suggest that more reference data
could support higher classification accuracies.
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Table 1. F1-score ranges for the different tree species classifications from region-dependent models.

Dominant Tree Species F1-Score Range

Pine 0.79–0.92
Spruce 0.88–0.96

Douglas fir 0.69–0.74
Larch 0.75
Beech 0.83–0.87
Oak 0.76–0.78

Other broadleaf 0.60–0.80

Besides the assessment of the model precisions via test data that is reflected by the
F1-scores, the additional plausibility check of the dominant tree species map, through a
comparison with independent forest stand inventory data from forest management plans,
shows the spatial representativeness of the classification (Figure 4). A predominantly
good agreement was found between the satellite-based classification and the forest stand
inventory data. Since the forest stand inventory data represent the dominant tree species
per forest management unit, the classification, with a spatial resolution of 10 m, is spatially
more detailed and can thus reflect the variability of tree species in each management unit.

However, this comparison also provides insights into inaccuracies of the classification
in regard to class confusion. The comparison in the four communal forests for which forest
stand inventory data were available in this study, proves the observed F1-scores, since
douglas fir and larch are in few cases misclassified as mainly spruce and other broadleaf,
respectively. Larches, as deciduous conifers, obviously have spectral–phenological charac-
teristics which are classified by the model as other broadleaved trees.

The results of the second plausibility check to test the classification results are shown
in Tables 2 and 3. The comparison of areas covered by the seven main tree species in
the forest area between the NFI and the classification per federal state shows reasonable
results. Within the NFI area data, spruce also includes fir for this comparison, since the
classification could not distinguish between spruce and fir due to insufficient training data
for fir. For example, in Baden-Württemberg, the classification overestimates the share of
pine with 1.8 percent whereas for douglas fir, the share is underestimated with 0.4 percent.
The variation for spruce is between –1.0 for Thuringia and 12.8 for Bavaria and thus shows
a variation in range for various federal states. This comparison shows a slight systematic
underrepresentation of douglas fir and larch in the classification, which corresponds with
the lower F1-scores and the lowest number of reference samples as reported above.

Table 2. Percentage of area covered by each tree species in the forest area per federal state. Comparison
of NFI data and the classification (DTS). Diff shows the difference in percentages for coniferous trees.

Dominant Tree Species Pine Spruce Douglas Fir Larch
Federal State NFI DTS Diff NFI DTS Diff NFI DTS Diff NFI DTS Diff

Baden-Wurttemberg 5.8 7.6 1.8 41.4 46.7 5.3 3.3 2.9 −0.4 1.7 0.0 −1.7
Bavaria 16.8 17.3 0.5 43.2 56.0 12.8 0.8 0.0 −0.8 2.1 0.0 −2.1
Brandenburg and Berlin 70.1 72.4 2.3 1.8 3.2 1.4 1.0 0.2 −0.8 1.2 0.8 −0.4
Hessen 9.3 8.4 −0.9 21.8 28.3 6.5 3.6 1.8 −1.8 4.6 0.3 −4.3
Mecklenburg Western
Pomerania 36.7 38.5 1.8 7.7 8.5 0.9 1.4 0.5 −0.9 3.1 1.0 −2.1

Lower Saxony 28.6 33.5 4.9 16.8 18.8 2.0 2.4 1.1 −1.3 4.7 0.9 −3.7
Northrhine-Westphalia 6.7 11.6 4.9 29.5 30.0 0.5 1.7 1.0 −0.7 3.3 1.1 −2.2
Rhineland Palatinate 9.9 9.5 −0.4 20.2 26.9 6.8 6.4 5.5 −0.9 2.4 0.1 −2.3
Saarland 5.1 2.4 −2.7 12.4 22.7 10.3 3.7 5.2 1.5 2.5 0.0 −2.5
Saxony 28.2 27.9 −0.3 34.5 44.7 10.2 0.2 0.1 −0.1 3.4 0.5 −2.9
Saxony-Anhalt 42.6 48.0 5.4 9.9 12.3 2.4 0.5 0.3 −0.2 2.4 0.9 −1.5
Schleswig-Holstein 7.7 12.9 5.2 17.4 17.9 0.5 2.0 1.4 −0.6 7.4 0.8 −6.6
Thruringia 14.1 23.3 9.2 38.5 37.5 −1.0 0.4 0.1 −0.3 3.2 0.2 −3.0
Hamburg and Bremen 10.6 26.5 15.9 2.2 10.7 8.5 0.9 0.5 −0.4 2.4 1.2 −1.2
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Figure 4. Dominant tree species classification (A1,B1) compared to the dominant tree species per
forest management unit as recorded by the forest inventories of the forest management plans (A2,B2).

The correlation analysis showed significant results with very high correlation coeffi-
cients for six tree species. Only for the area percentages of larch, no significant correlation
was found. The nonparametric Mann–Whitney-U-Test was performed to explore the
difference in two independent and not normally distributed data groups. The null hy-
pothesis describes no difference between both groups. The results of the test in Table 4
show p-values greater than the significance level of 0.05. Hence, no statistically significant
difference observed between the NFI area information and the classification, except for
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larch, is calculated. This means that for most tree species, the shares as derived from the
classification are comparable with the NFI results.

Table 3. Percentage of area covered by each tree species in the forest area per federal state. Comparison
of NFI data and the classification (DTS). Diff shows the difference in percentages for deciduous trees.

Dominant Tree Species Beech Oak Other Broadleaf
Federal State NFI DTS Diff NFI DTS Diff NFI DTS Diff

Baden-Wurttemberg 21.5 19.0 −2.5 7.5 8.5 1.0 17.1 15.3 −1.9
Bavaria 13.6 13.3 −0.3 6.6 3.6 −3.0 14.7 9.8 −4.9
Brandenburg and Berlin 3.3 3.0 −0.3 6.6 4.6 −2.0 14.6 15.8 1.2
Hesse 30.1 31.9 1.8 13.2 14.2 1.0 14.2 15.2 1.0
Mecklenburg Western
Pomerania 12.3 12.2 0.1 9.4 6.6 −2.8 27.2 32.6 5.4

Lower Saxony 13.5 13.0 −0.5 12.3 9.8 −2.5 19.1 22.8 3.7
Northrhine-Westphalia 18.3 16.7 −1.6 16.0 16.3 0.3 20.7 23.3 2.6
Rhineland Palatinate 21.8 23.3 1.5 20.2 18.0 −2.2 16.8 16.6 −0.2
Saarland 19.8 22.9 3.1 19.8 16.7 −3.1 34.4 30.1 −4.3
Saxony 4.2 4.5 0.3 8.6 5.5 −3.1 18.7 16.8 −1.9
Saxony-Anhalt 6.7 9.3 2.6 12.3 8.5 −3.8 21.2 20.7 −0.5
Schleswig-Holstein 19.3 12.2 −7.0 15.8 16.4 0.6 28.9 38.4 9.5
Thuringia 19.8 21.5 1.7 6.8 7.9 1.1 15.5 9.5 −5.9
Hamburg and Bremen 11.2 2.8 −8.4 18.9 11.5 −7.4 44.4 46.8 2.5

Table 4. Results of the Mann–Whitney-U-Test for percentage of area covered by each main tree species.

Pine Spruce Douglas Fir Larch Beech Oak Other Broadleaf

Pearson’s correlation 0.968 0.961 0.915 0.205 0.918 0.882 0.932
p-Value 0.000 0.000 0.000 0.481 0.000 0.000 0.000

Mann–Whitney-U 84.00 79.00 68.00 0.00 90.00 77.00 98.00
Z −0.643 −0.873 −1.378 −4.503 −09.368 −0.965 0.00

p-Value 0.541 0.401 0.178 0.00 0.734 0.352 1.00

4. Discussion

The main challenges of large-scale national tree species mapping so far have been the
limited availability and quality of tree species reference data for training and testing of
classification models as well as the processing of large satellite data volumes [6]. While in
2021 and 2016, Fassnacht et al. [34] and Pu [36] provided a good overview of studies on tree
species classification from remotely sensed data, more recent studies showed the potential
of mainly Sentinel-2 data for regional tree species classifications [13,14]. For instance, the
feasibility study from Zeug et al. [6] showed the high potential of Copernicus data for
a determination of the tree species composition in forests, which was demonstrated in
several regions in Germany and Austria. They concluded that a nation-wide tree species
classification would require denser Sentinel-2 time series and well-distributed reference
data, such as the data from the National Forest Inventory. However, these were only of
limited use so far, since the NFI data lack area reference and the location accuracy of the
public data (inventory points) is not sufficient [6].

For the present study, reference data from the precise locations of the NFI were made
available through a data-sharing agreement, which essentially allowed us to use these
data for a Germany-wide dominant tree species mapping for the first time. The last NFI
in Germany took place in 2011/2012 and the remote-sensing data were from 2017. There
might have occurred forest cover changes in this period in some inventory points, although
changes in tree species composition are slow and thus no major alteration in the almost-
pure stands that were used is to be expected. Cases of complete loss of forest cover were
excluded through a hierarchical classification approach, in which forest and non-forest
was first differentiated, before deciduous and non-deciduous forest stands and later the
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dominant tree species were classified. With respect to the accuracy of reference locations,
we decided to take only pure stands as reference data and the 10 × 10 m pixel-scale of
Sentinel-2, where the geographical coordinates from the NFI inventory sample points fit
in. The assumption is that those pixels are definitely referable to the NFI information and
that the effect of the inaccurate area reference in the angle-counting sample inventories is
neglectable.

Our results show that the NFI data can be used as training and test data and that a
Germany-wide classification of seven main tree species is possible. The spectral–phenological
information of the dense Sentinel-2 time series proved to be suitable to map tree species
accurately over a large area [52]. While some previous regional studies classified some
more tree species [6,12,13], only seven classes of main tree species were differentiated
in our study, due to limited reference data for pure stands of various tree species. This
can be seen as a trade-off between the number of considered species and a very large
classification area, for the sake of a harmonized Germany-wide dominant tree species
map. If the reference data set can be extended for some species by more pure stands or
by even more rare species in the future, for example through additional forest inventory
data collected in the federal states, the range of tree species in the classification could
be extended. The classification results show plausible tree species distribution patterns,
reasonable to very good F1-scores (tree-species-dependent) and a good agreement with
completely independent forest inventory data. A comparison of our results with the
results from the national mapping in Denmark [18] and Norway [24] show that we could
differentiate more tree species, since the study in Norway differentiated three dominant
tree species (spruce, pine, and deciduous). Of course, spruce and pine cover more than
70 percent of the forested area in Norway, but a further differentiation of deciduous tree
species (such as birch) would be an asset [24]. The study for Denmark considered six
dominant tree species (spruce, pine, other conifers, beech, oak and other broadleaves);
however, the accuracies differ from our results. Although the study in Denmark [18]
included additional data such as Sentinel-1, the classification showed lower accuracies (oak:
34%, beech: 63%, other broadleaves: 59%, spruce: 73%, pine: 73%, and other conifers: 65%).

Other studies reported that the use of a digital elevation model (DEM) in the classifica-
tion of tree species improved the accuracies for some species [53]. For instance, Grabska
et al. [35] found that the DEM improved the accuracy of the classification of Spruce in
the mountainous Polish Carpathians, since their natural occurrence is mainly limited to
altitudes above 1200 m asl. In Germany, spruce occurrence is not limited to higher alti-
tudes, since it was planted in lowland areas outside of their potential natural occurrence
area for decades. However, spruce showed the highest F1-scores in our study and spruce
stands could be differentiated by their spectral phenology, supported by a large number
of reference samples. The lowest F1-scores were related to low species reference samples,
which was also observed in previous studies [35]. In our study for example, fir could
not be included in the classification, since the number of pure reference stands in the NFI
data were too low. Classification tests including fir with a low number of training data
caused confusion, mainly with the class Spruce. In regions where Larch could not be
classified due to limited reference samples, Larch often falls into the class Other Broadleaf
due to its deciduous character. The additional plausibility checks also indicated areas with
higher uncertainties of the classification. These areas are mainly tree stands over surfaces
that are not typical forest understories such as artificial or heavily managed understories
(e.g., tree stands along streets or inner-urban tree stands). Uncertainties were also found in
forest stands in highly variable terrain (that varies in slope and slope orientation at short
distances) with a wide diversity of tree species (e.g., Palatinate Forest or the northern part
of the Black Forest). For such areas with highly variable terrain, the additional use of aspect
and slope as input variables for the classification could improve the accuracy [25].

In this study, only optical satellite data were used for the classification of the domi-
nant tree species, since time series of these data can cover the species-dependent spectral
phenology, as already applied in previous studies [13,21–23]. Lechner et al. [26] found that
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the additional use of Sentinel-1 SAR (synthetic aperture radar) data only increased the
accuracy of their tree species classification by 0.5% in comparison to the classification that
bases on a Sentinel-2 time series. Similar results were even found for the binary classifi-
cation of tree types (broadleaved vs. coniferous), where the additional use of Sentinel-1
data only yielded minor improvements in accuracy [25]. However, additional SAR data
could be integrated to increase the information depth beyond tree species mapping. Since
SAR data might not be as suitable for tree species mapping as optical data, it proved to
be sensitive to structural forest parameters, since the backscatter is mainly influenced by
crown density, leaf moisture, forest volume, age, etc. [34]. SAR data could therefore be
used for assessing additional forest characteristics, with a particular potential for assessing
the variation within each tree species class. In addition, tree height or forest structure
information derived from satellite-based LiDAR (light detection and ranging) could also
be integrated to assess forest stand age and to improve large-scale forest stand biomass
estimates [13,54]. Future research should therefore focus on hierarchical approaches, where
each information level is produced by using the most promising data type that was already
proven to be effective, rather than differentiating various forest characteristics such as forest
type, tree species and structural parameters at once.

The plausibility check using independent data allowed for additional insights in
the spatial representation of the classification, and can initiate discussions on how such
satellite-based assessment could support forest inventories for forest management plans, or
in opposite, how these forest inventories can be used to generate more precise and locally
adjusted classification models. However, it must be noted that forest stand inventories also
vary depending on the individual forest manager and are therefore a subjective record. For
example, in forest stand descriptions, a stand with 80 percent beech trees and 20 percent
other broadleaved trees is defined based on the stock volume of the beech trees rather than
on the number of stems. Hence, forest stands with some old big beech with 80 percent of
stock volume, trees might have less area covered with beech compared to the 20 per cent
of other broadleaved trees. Since satellite images rather cover the area of trees through
the view from above, there can be a discrepancy between the forest stand inventory and
the satellite-based classification. Hence, in this example, the satellite-based classification
would probably classify a forest stand with more other broadleaved trees than beech trees.

In comparison with other national tree species classifications [18,24], our study shows
very good results demonstrated by reasonable to very high F1-scores. The additional
plausibility checks proved to provide more relevant information about uncertainties beyond
the F1-scores. The comparison of area percentages between the NFI point data and the
classification per federal state revealed for some tree species and federal states larger
deviation, such as for spruce in Bavaria. This might be caused by several factors. On
the one hand, the NFI data also have inaccuracies since they rely on point information
extrapolated to an area (in this case to the federal state level). On the other hand, our model
for Bavaria could not differ between douglas fir, fir and other conifers due to insufficient
reference data, which led to more classified spruce stands in Bavaria as compared to NFI. A
comparison between state forest inventory in Saarland with NFI data revealed different
shares of tree species [55]. Thus, remote sensing-based approaches as presented in this
study provide valuable information for the assessment of area information which can
complement the sample point inventories.

Most likely, the classification results could be further enhanced in regard to thematic
depth (tree species) and accuracies (F1-scores) through additional reference data, but the
access, availability, quality and scope of more suitable forest reference data vary between
the federal states in Germany. There is not yet a common data policy and the willingness
to provide data is diverse among forest administrations and national authorities. In
2021, 141 countries, including Germany, signed the Glasgow Leaders’ Declaration on
Forests and Land Use at the COP26 (https://ukcop26.org/glasgow-leaders-declaration-
on-forests-and-land-use/, accessed on 16 May 2022). In regard to this declaration, a
successful transformation to a better protection and more sustainable management of

https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/
https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/
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forests also depends on much-improved access to forest information [56]. Nabuurs et al. [56]
highlight the need that governments share the taxpayer-funded NFI data freely, which
will permit complementing the decadal forest inventories through satellite-based annual
forest assessments. Additionally, in regard to the New EU Forest Strategy for 2030 and
the related ‘forest observation, reporting and data collection framework’, an open access
data policy is fundamental. An example of such an open data repository is the recently
published Tallo database (global tree allometry and crown architecture database), which
provides a comprehensive database on tree characteristics, even though just a subset
of entries have the required geolocation precision for a direct link with high-resolution
satellite data [57]. In addition, we also consider it fundamental that results from research
studies on satellite-based forest assessments are made available publicly, beyond scientific
publications. Giving access to the results for the interested public, forestry experts, the
scientific Earth observation community and governmental authorities can initiate a broader
discussion on the potential and limitations of Earth-observation-based forest information.
A comparison of results from different studies could ensure that the methodologies can be
effectively improved in the future. We therefore provide the dominant tree species map of
Germany’s forests via a web-based interactive map that can be accessed by the public and
we will incorporate the feedback in regard to the potentials and limitations of this map in
our future research.

5. Conclusions

This study presents an approach for the first satellite-based dominant tree species
map for Germany. Driven by a time-series of Sentinel-2 data that covers the spectral–
phenological characteristics of tree species and sufficient reference data from the NFI, this
national map could be generated via a machine-learning-based processing pipeline. The
dominant tree species map complements the forest information that is available from the
NFI sample plots and extends the available forest information in Germany through a full
coverage and spatially explicit data set. Precise knowledge of the occurrence and spatial
distribution of tree species is important for assessing their adaptability and resilience due
to climate change impacts. However, satellite-based approaches cannot replace forest stand
inventories or NFIs, but are rather dependent on these data. This study demonstrates
that synergies between Earth observation and forest inventories can add benefit and can
support decision making in policy and forestry practice. Open access of forest inventory
data from NFIs would further improve the quality of satellite-based maps. However, also
open access of satellite-derived information from research, as provided in this study, is
fundamental to strengthen the exchange between science, society, practitioners and policy.
Such synergies are required to support national and international initiatives such as the EU
Forest Strategy for 2030 or the implementation of digital forest monitoring as mentioned in
the German coalition agreement for 2021–2025 [58].
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