A New Line Matching Approach for High-Resolution Line Array Remote Sensing Images
Abstract
:1. Introduction
2. Methodology
2.1. Epipolar Constraint
2.1.1. Epipolar Line Generation
2.1.2. Overlap Constraint
2.2. Direction Constraint
2.3. Corresponding Points Constraint
2.4. Similarity Constraint for Line Descriptor
2.4.1. Generation of the Line Support Region
2.4.2. The Construction of the Line Descriptor
2.4.3. Similarity Constraint
2.5. Determining the Final Matching Results
3. Line Matching Experiments
3.1. Parameter Selection
3.1.1. Determine the Value of Parameter
3.1.2. Determine the Values of Parameters and
3.1.3. Determine the Values of Parameters
3.2. Comparison to State-of-the-Art Matching Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lemaire, T.; Lacroix, S. Monocular-Vision Based SLAM Using Line Segments. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007. [Google Scholar]
- Lyu, C.; Jiang, J. Remote sensing image registration with line segments and their intersections. Remote Sens. 2017, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Seok, B.R.; Hwang, Y.H.; Hong, H.K. 3D Reconstruction Based on Invariant Properties of 2D Lines in Projective Space. In Advances in Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Qian, S.B.; Lin, Y. 3D reconstruction of rotated surface based on contour lines. Comput. Eng. Des. 2009, 30, 3875–3878. [Google Scholar] [CrossRef]
- Schindler, G.; Krishnamurthy, P.; Dellaert, F. Line-Based Structure from Motion for Urban Environments. In Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), Chapel Hill, NC, USA, 14–16 June 2006. [Google Scholar]
- Chen, M.; Shao, Z. Line-based matching for high-resolution images with robustness for scale, rotation and illumination. Opt. Precis. Eng. 2013, 21, 790–798. (In Chinese) [Google Scholar] [CrossRef]
- Elaksher, A.F. Automatic line matching across multiple views based on geometric and radiometric properties. Appl. Geomat. 2011, 3, 23–33. [Google Scholar] [CrossRef]
- Guerrero, J.J.; Sagüés, C. Robust Line Matching and Estimate of Homographies Simultaneously. In Proceedings of the Pattern Recognition and Image Analysis, First Iberian Conference, IbPRIA 2003, Puertode Andratx, Mallorca, Spain, 4–6 June 2003. [Google Scholar]
- Yip, R.K.K.; Ho, W.P. A multi-level dynamic programming method for stereo line matching. Pattern Recognit. Lett. 1998, 19, 839–855. [Google Scholar] [CrossRef]
- Zeng, J.X.; Yu, S.; Fu, X.; Li, C.X. A line segments matching method based on epipolar-line constraint and line segment features. J. Softw. 2011, 6, 1746–1754. [Google Scholar] [CrossRef] [Green Version]
- Song, W.D.; Zhu, H.; Wang, J.X.; Liu, Y.X. Line feature matching method based on multiple constraints for close-range images. J. Image Graph. 2016, 21, 764–770. (In Chinese) [Google Scholar]
- Wu, B.; Zhang, Y.; Zhu, Q. Integrated point and edge matching on poor textural images constrained by self-adaptive triangulations. ISPRS J. Photogramm. Remote Sens. 2012, 68, 40–55. [Google Scholar] [CrossRef]
- Jia, Q.; Fan, X.; Gao, X.K.; Yu, M.Y.; Li, H.J.; Luo, Z.X. Line matching based online-points invariant and local homography. Pattern Recognit. 2018, 81, 471–483. [Google Scholar] [CrossRef]
- Fan, B.; Wu, F.; Hu, Z. Robust line matching through line-point invariants. Pattern Recognit. 2012, 45, 794–805. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Q.; Wu, B.; Zou, Z. A hierarchical stereo line matching method based on a triangle constraint. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 522–527. (In Chinese) [Google Scholar]
- Fan, B.; Wu, F.; Hu, Z. Line Matching Leveraged by Point Correspondences. In Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Ok, A.O.; Wegner, J.D.; Heipke, C.; Rottensteiner, F.; Soergel, U.; Toprak, V. A Stereo Line Matching Technique for Aerial Images Based on a Pair-Wise Relation Approach. In Proceedings of the ISPRS Istanbul Workshop 2010 on Modeling of Optical Airborne and Spaceborne Sensors, Istanbul, Turkey, 11–13 October 2010. [Google Scholar]
- Wang, Z.; Liu, H.; Wu, F. HLD: A robust descriptor for line matching. In Proceedings of the 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, Huangshan, China, 19–21 August 2009. [Google Scholar]
- Li, K.; Yao, J.; Lu, X. Robust Line Matching Based on Ray-Point-Ray Structure Descriptor. In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Schmid, C.; Zisserman, A. Automatic Line Matching Across Views. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997. [Google Scholar]
- Bay, H.; Ferrari, V.; Gool, L.J.V. Wide-Baseline Stereo Matching with Line Segments. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, F.; Hu, Z. MSLD: A robust descriptor for line matching. Pattern Recognit. 2009, 42, 941–953. [Google Scholar] [CrossRef]
- Verhagen, B.; Timofte, R.; Gool, L.V. Scale-Invariant Line Descriptors for Wide Baseline Matching. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 493–500. [Google Scholar]
- Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805. [Google Scholar] [CrossRef]
- Ok, A.O.; Wegner, J.D.; Heipke, C.; Rottensteiner, F.; Soergel, U.; Toprak, V. A new straight line reconstruction methodology from multi-spectral stereo aerial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 25–30. [Google Scholar]
- Kim, H.; Lee, S. Simultaneous line matching and epipolar geometry estimation based on the intersection context of coplanar line pairs. Pattern Recognit. Lett. 2012, 33, 1349–1363. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhu, Q.; Wang, W.X. Reliable line matching algorithm for stereo images with topological relationship. Acta Geod. Cartogr. Sin. 2017, 46, 1850–1858. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.X.; Zhu, Q.; Liu, S.Y.; Wang, W.X. Robust line feature matching based on pair-wise geometric constraints and matching redundancy. ISPRS J. Photogramm. Remote Sens. 2021, 172, 41–58. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, T.; Si, L. Sparse representation with geometric configuration constraint for line segment matching. Neurocomputing 2012, 134, 100–110. [Google Scholar] [CrossRef]
- Li, K.; Yao, J.; Lu, X.H.; Li, L.; Zhang, Z.C. Hierarchical line matching based on Line–Junction–Line structure descriptor and local homography estimation. Neurocomputing 2016, 184, 207–220. [Google Scholar] [CrossRef]
- Alshahri, M.; Yilmaz, A. Line matching in wide-baseline stereo: A top-down approach. Image Processing IEEE Trans. 2014, 23, 4199–4210. [Google Scholar] [CrossRef]
- Wang, L.; Neumann, U.; You, S. Wide-Baseline Image Matching Using Line Signatures. In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009. [Google Scholar]
- Park, S.H.; Lee, K.M.; Sang, U.K. A line feature matching technique based on an eigenvector approach. Comput. Vis. Image Underst. 2000, 77, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Ok, A.O.; Wegner, J.D.; Heipke, C.; Rottensteiner, F.; Soergel, U.; Toprak, V. Matching of straight line segments from aerial stereo images of urban areas. ISPRS J. Photogramm. Remote Sens. 2012, 74, 133–152. [Google Scholar] [CrossRef]
- Gioi, R.G.V.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. Assoc. Comp. March. 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Dai, J.G.; Song, W.D.; Jia, Y.H.; Zhang, Q. A new automatically matching algorithm for multi-source high resolution optical satellite images. Acta Geod. Cartogr. Sin. 2013, 52, 2718–2726. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
Images | Line Number | Corresponding Point Number | Our Approach | LJL | N-LPI | ||||
---|---|---|---|---|---|---|---|---|---|
Reference Images | Search Images | Number of Matches–Number of Correct Matches–Accuracy/% | Time/s | Number of Matches–Number of Correct Matches–Accuracy/% | Time/s | Number of Matches–Number of Correct Matches–Accuracy/% | Time/s | ||
(a) | 789 | 833 | 685 | 550–530–96.36 | 106 | 504–466–92.46 | 313 | 528–503–95.27 | 293 |
(b) | 774 | 748 | 532 | 445–424–95.28 | 100 | 482–420–87.14 | 503 | 439–372–84.74 | 167 |
(c) | 418 | 438 | 320 | 357–352–98.60 | 54 | 350–341–97.43 | 1395 | 355–351–98.87 | 121 |
(d) | 782 | 764 | 374 | 489–449–91.82 | 105 | 486–412–84.77 | 1455 | 444–368–82.88 | 166 |
(e) | 834 | 811 | 635 | 514–475–92.41 | 112 | 532–444–83.46 | 1019 | 491–437–89.00 | 260 |
(f) | 578 | 610 | 295 | 352–329–93.47 | 69 | 330–313–94.85 | 215 | 350–344–98.29 | 260 |
(g) | 718 | 699 | 442 | 370–358–96.76 | 87 | 360–337–93.61 | 670 | 344–323–93.90 | 146 |
(h) | 428 | 553 | 607 | 292–287–98.29 | 52 | 316–283–89.56 | 83 | 301–274–91.03 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, S.; Zhang, P. A New Line Matching Approach for High-Resolution Line Array Remote Sensing Images. Remote Sens. 2022, 14, 3287. https://doi.org/10.3390/rs14143287
Wang J, Liu S, Zhang P. A New Line Matching Approach for High-Resolution Line Array Remote Sensing Images. Remote Sensing. 2022; 14(14):3287. https://doi.org/10.3390/rs14143287
Chicago/Turabian StyleWang, Jingxue, Suyan Liu, and Ping Zhang. 2022. "A New Line Matching Approach for High-Resolution Line Array Remote Sensing Images" Remote Sensing 14, no. 14: 3287. https://doi.org/10.3390/rs14143287
APA StyleWang, J., Liu, S., & Zhang, P. (2022). A New Line Matching Approach for High-Resolution Line Array Remote Sensing Images. Remote Sensing, 14(14), 3287. https://doi.org/10.3390/rs14143287