Grassland Aboveground Biomass Estimation through Assimilating Remote Sensing Data into a Grass Simulation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Observational Data
2.2.2. Meteorology Data
2.2.3. Satellite Data
2.2.4. Supplemental Data
2.3. Methods
2.3.1. ModVege Model
2.3.2. Markov Chain Monte Carlo (MCMC)
2.3.3. Four-Dimensional Variational (4Dvar) Data Assimilation
2.3.4. Accuracy Evaluation Indexes
3. Results
3.1. Calibration of ModVege Model
3.2. The Spatial Variability Optimization of ST2 and BMGV0 Improve the Accuracy in Assimilation
3.3. Grassland Aboveground Biomass Estimation with the ModVege Model Using 4DVar Assimilation Xilinhot City
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Da Silveira Pontes, L.; Maire, V.; Schellberg, J.; Louault, F. Grass strategies and grassland community responses to environmental drivers: A review. Agron. Sustain. Dev. 2015, 35, 1297–1318. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, Y.L.; Lu, C.X.; Zheng, D.; Cheng, S.K. Study on valuation of rangeland ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. [Google Scholar] [CrossRef]
- Altesor, A.; Oesterheld, M.; Leoni, E.; Lezama, F.; Rodríguez, C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. 2005, 179, 83–91. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Liu, Z.Y.; Lu, H.; Wang, Z.X.; Sun, L.S.; Wan, X.P.; Guo, X.; Zhao, Y.T.; Wang, J.J.; Shi, Z.C. Damage and Control of Poisonous Weeds in Western Grassland of China. Agric. Sci. China 2010, 9, 1512–1521. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.B.; Wang, Z.Q.; Yang, Y.; Zhang, Y.Z.; Li, J.L.; An, R. Quantitative assessment of relative roles of climate change and human activities on grassland net primary productivity in the Three-River Source Region, China. Acta Prataculturae Sin. 2017, 26, 1–14. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, S.W.; Wei, B.C. Temporal and Spatial Pattern of Grassland Degradationand Its Determinants for Recent 30 Years in Xilingol. Chin. J. Grassl. 2017, 39, 86–93. [Google Scholar] [CrossRef]
- Shen, G.R.; Wang, R.C. Review of the application of vegetation remote sensing. J. Zhejiang Univ. (Agric. Life Sci.) 2001, 27, 682–690. [Google Scholar] [CrossRef]
- Nakano, T.; Bavuudorj, G.; Urianhai, N.G.; Shinoda, M. Monitoring aboveground biomass in semiarid grasslands using MODIS images. J. Agric. Meteorol. 2013, 69, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Nie, L.; Yang, Y. Estimation of the total production of the herbage in the Tianshan Mountain Area using remote sensing technology with NDVI similarity zoning. Pratacultural Sci. 2018, 35, 1754–1764. [Google Scholar] [CrossRef]
- Zhou, X.; Sheng, J.D.; Zhang, W.T.; Wu, H.Q.; Wang, X.J. Aboveground Biomass Inversion of Grassland in Ili Area Using MODIS Data. Acta Agrectir. Sin. 2015, 23, 27–33. [Google Scholar] [CrossRef]
- Reiche, M.; Funk, R.; Zhang, Z.D.; Hoffmann, C.; Reiche, J.; Wehrhan, M.; Li, Y.; Sommer, M. Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China. Grassl. Sci. 2012, 58, 8–19. [Google Scholar] [CrossRef]
- Chen, P.F.; Wang, J.L.; Liao, X.Y.; Yin, F.; Chen, B.R.; Liu, R. Using Data of HJ-1A/B Satellite for Hulunbeier Grassland Aboveground Biomass Estimation. J. Nat. Resour. 2010, 25, 1122–1131. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wang, J.L.; Wei, H.S.; Altansukh, O.; Davaadorj, D.; Sonomdagva, C. Study on estimation method of Mongolia grassland production based on sparse samples. J. Geo-Inf. Sci. 2020, 22, 1814–1822. [Google Scholar] [CrossRef]
- Xun, Q.L.; Dong, Y.Q.; An, S.Z.; Yan, K. Monitoring of grassland herbage accumulation by remote sensing using MOD09GA data in Xinjiang. Acta Prataculturae Sin. 2018, 27, 10–26. [Google Scholar] [CrossRef]
- Johnson, I.R.; Thornley, J.H.M. Vegetative crop growth model incorporating leaf area expansion and senescence, and applied to grass. Plant Cell Environ. 1983, 6, 721–729. [Google Scholar] [CrossRef]
- Brereton, A.J.; Danielov, S.A.; Scott, D. Agrometeorology of Grass and Grasslands for Middle Latitudes; World Meteorological Organisation: Geneva, Switzerland, 1996. [Google Scholar]
- Jouven, M.; Carrere, P.; Baumont, R. Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures. 1. Model description. Grass Forage Sci. 2006, 61, 112–124. [Google Scholar] [CrossRef]
- Jouven, M.; Carrere, P.; Baumont, R. Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures. 2. Model evaluation. Grass Forage Sci. 2006, 61, 125–133. [Google Scholar] [CrossRef]
- Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; Schulte, R.P.O.; Delaby, L.; O’Connor, D. Evaluation of three grass growth models to predict grass growth in Ireland. J. Agric. Sci. 2012, 151, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Katata, G.; Grote, R.; Mauder, M.; Zeeman, M.J.; Ota, M. Wintertime grassland dynamics may influence belowground biomass under climate change: A model analysis. Biogeosciences 2020, 17, 1071–1085. [Google Scholar] [CrossRef] [Green Version]
- Quaife, T.; Lewis, P.; Dekauwe, M.; Williams, M.; Law, B.E.; Disney, M.; Bowyer, P. Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sens. Environ. 2008, 112, 1347–1364. [Google Scholar] [CrossRef]
- Migliavacca, M.; Meroni, M.; Busetto, L.; Colombo, R.; Zenone, T.; Matteucci, G.; Manca, G.; Seufert, G. Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model. Sensors 2009, 9, 922–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, B.B.; Li, X.; Quan, X.W.; Qiu, S. Estimating the Aboveground Dry Biomass of Grass by Assimilation of Retrieved LAI into a Crop Growth Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 550–561. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, G.; Zorn, C.; Tao, F.L.; Ni, S.Q.; Zhang, W.Y.; Tu, T.; Hoglind, M. Grass modelling in data-limited areas by incorporating MODIS data products. Field Crop Res. 2021, 271, 108250. [Google Scholar] [CrossRef]
- Zhang, X.T.; He, B.B.; Quan, X. Assimilation of 30 m resolution LAI into crop growth model for improving LAI estimation in plateau grassland. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGRASS), Beijing, China, 10–15 July 2016; pp. 1296–1299. [Google Scholar] [CrossRef]
- Huang, J.X.; Sedano, F.; Huang, Y.B.; Ma, H.Y.; Li, X.L.; Liang, S.L.; Tian, L.Y.; Zhang, X.D.; Fan, J.L.; Wu, W.B. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Huang, J.X.; Tian, L.Y.; Liang, S.L.; Ma, H.Y.; Becker-Reshef, I.; Huang, Y.B.; Su, W.; Zhang, X.D.; Zhu, D.H.; Wu, W.B. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.T.; Liu, G.X.; Yang, Y.; Song, X.Y.; Bai, H.H. Dynamic monitoring of net primary productivity and its response to climate factors in native grassland in Inner Mongolia using a light-use efficiency model. Acta Prataculturae Sin. 2020, 29, 1. [Google Scholar]
- Jin, Y.X.; Yang, X.C.; Qiu, J.J.; Li, J.Y.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.L.; Yu, H.D.; Xu, B. Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Calanca, P.; Deleglise, C.; Martin, R.; Carrere, P.; Mosimann, E. Testing the ability of a simple grassland model to simulate the seasonal effects of drought on herbage growth. Field Crops Res. 2016, 187, 12–35. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirement-FAO Irrigation and Drainage Paper 56, 1st ed.; FAO: Rome, Italy, 1998; pp. 17–20. [Google Scholar]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Chinese Ecosystem Research Network. Plant phenological observation dataset of the Chinese Ecosystem Research Network (2003–2015) [DB/OL]. Sci. Data Bank 2017, 10. [Google Scholar] [CrossRef]
- Vrugt, J.A. Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environ. Model. Softw. Environ. Data News 2016, 75, 273–316. [Google Scholar] [CrossRef] [Green Version]
- Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE 2015, 10, e145180. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Zhao, J. Principles and methods of grassland yield estimation by using remote sensing technology. Pratacultural Sci. 2009, 3, 34–38. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, B.; Yang, X.C.; Jin, Y.X.; Li, J.Y.; Xia, L.; Chen, S.; Ma, H.L. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China. Remote Sens. 2014, 6, 5368–5386. [Google Scholar] [CrossRef] [Green Version]
- Ruellea, E.; Hennessya, D.; Delabyb, L. Development of the Moorepark St Gilles grass growth model (MoSt GG model): A pre-dictive model for grass growth for pasture based systems. Eur. J. Agron. 2018, 99, 89–91. [Google Scholar] [CrossRef]
- Korhonen, P.; Palosuo, T.; Persson, T.; Höglind, M.; Jégo, G.; Oijen, M.V.; Gustavsson, A.M.; Bélanger, G.; Virkajärvia, P. Modelling grass yields in northern climates—A comparison of three growth models for timothy. Field Crops Res. 2018, 224, 37–47. [Google Scholar] [CrossRef]
- McDonnell, J.; Brophya, C.; Ruelle, E.; Shalloo, L.; Lambkin, K.; Hennessy, D. Weather forecasts to enhance an Irish grass growth model. Eur. J. Agron. 2019, 105, 168–175. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.X.; Li, X.C.; Zhuo, W.; Wu, Y.T.; Niu, Q.D.; Su, W.; Yuan, W.P. A dataset of winter wheat aboveground biomass in China during 2007–2015 based on data assimilation. Sci. Data 2022, 9, 200. [Google Scholar] [CrossRef]
- Huang, J.X.; Gómez-Dans, J.L.; Huang, H.; Ma, H.Y.; Wu, Q.L.; Lewis, P.E.; Liang, S.L.; Chen, Z.X.; Xue, J.H.; Wu, Y.T.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.X. Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China. Remote Sens. 2021, 13, 4372. [Google Scholar] [CrossRef]
- Wang, X.L.; Huang, J.X.; Feng, Q.L.; Yin, D.Q. Winter wheat yield prediction at county level and uncertainty analysis in main wheat-producing regions of China with deep learning approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Fang, J.Y.; Liu, G.H.; Xu, S.L. Carbon Pools in Terrestrial Ecosystems in China. In Emissions and Their Relevant Processes of Greenhouse Gases in China, 1st ed.; Wang, G.C., Wen, Y.P., Eds.; China Environment Science Press: Beijing, China, 1996; pp. 109–128. [Google Scholar]
- Schaffrash, D.; Barthold, F.K.; Bernhofer, C. Spatiotemporal variability of grassland vegetation cover in a catchment in Inner Mongolia, China, derived from MODIS data products. Plant Soil 2011, 340, 181–198. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, Z.C.; Zhang, J.B.; Lang, M.; Mary, B.; Chang, S.X. Soil moisture effects on gross nitrification differ between adjacent grassland and forested soils in central Alberta, Canada. Plant Soil 2012, 352, 289–301. [Google Scholar] [CrossRef]
Category | Dataset | Resolution | Year |
---|---|---|---|
Observational data | grassland aboveground biomass observations | \ | 2012 |
Meteorology data | AgERA5 dataset | daily | 2012 |
Satellite data | MCD15A3H (LAI) | 500 m/4 days | 2012 |
Supplemental data | LUCC dataset | 1000 m | 2013 |
Soil texture data | 1000 m | \ | |
Plant phenological observation dataset | \ | \ |
Notation | Unit | Description | Value |
---|---|---|---|
SLA | m2/g | Specific leaf area | 0.0256 |
minSEA | - | The minimum value of the seasonal factor | 0.67 |
LAM | % | Percentage of laminae | 0.68 |
RUEmax | g/MJ | Maximum radiation use efficiency | 3 |
maxSEA | - | The maximum value of the seasonal factor | 1.33 |
T0 | °Cd | Minimum temperature for photosynthesis | 4 |
T1 | °Cd | Minimum temperature for maximum photosynthetic rate | 10 |
T2 | °Cd | Maximum temperature for maximum photosynthetic rate | 20 |
KGV | °Cd | Senescence rate, green vegetative tissues | 0.002 |
KGR | °Cd | Senescence rate, green reproductive tissues | 0.001 |
KlDV | °Cd | Abscission rate, dead vegetative tissues | 0.001 |
KlDR | °Cd | Abscission rate, dead reproductive tissues | 0.0005 |
SGV | d−1 | Rate of biomass loss with respiration, green vegetative tissues | 0.4 |
SGR | d−1 | Rate of biomass loss with respiration, green reproductive tissues | 0.2 |
NI | - | Nutrition index | 0.88 |
Parameter | Description | Range |
---|---|---|
LLS (°Cd) | Leaf lifespan | [600, 900] |
ST1 (°Cd) | Temperature sum defining the start of reproductive growth | [600, 1600] |
ST2 (°Cd) | Temperature sum defining the end of reproductive growth | [1600, 5000] |
BMGV0 | Initial biomass, green vegetative tissues | [0.01, 4.0] |
BMD0 | Initial biomass, dead vegetative and reproductive tissues | [0.01, 1500] |
Zones | Parameters | ||||
---|---|---|---|---|---|
ST1 (°Cd) | ST2 (°Cd) | LLS (°Cd) | BMGV0 | BMD0 | |
1 | 1062.00 | 2500.00 | 793.50 | 0.19460 | 519.50 |
2 | 1350.00 | 2628.00 | 796.50 | 0.07556 | 1327.00 |
3 | 619.00 | 2168.00 | 752.00 | 3.97300 | 479.20 |
4 | 862.00 | 2356.00 | 770.50 | 0.52600 | 63.53 |
5 | 696.50 | 2328.00 | 821.50 | 3.87500 | 312.80 |
6 | 1393.00 | 2672.00 | 752.50 | 1.07100 | 139.50 |
7 | 1370.00 | 2674.00 | 751.00 | 1.37400 | 1471.00 |
8 | 1160.00 | 2544.00 | 771.50 | 0.53100 | 44.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, J.; Huang, H.; Li, X.; Jin, Y.; Guo, H.; Feng, Q.; Zhao, Y. Grassland Aboveground Biomass Estimation through Assimilating Remote Sensing Data into a Grass Simulation Model. Remote Sens. 2022, 14, 3194. https://doi.org/10.3390/rs14133194
Zhang Y, Huang J, Huang H, Li X, Jin Y, Guo H, Feng Q, Zhao Y. Grassland Aboveground Biomass Estimation through Assimilating Remote Sensing Data into a Grass Simulation Model. Remote Sensing. 2022; 14(13):3194. https://doi.org/10.3390/rs14133194
Chicago/Turabian StyleZhang, Yuxin, Jianxi Huang, Hai Huang, Xuecao Li, Yunxiang Jin, Hao Guo, Quanlong Feng, and Yuanyuan Zhao. 2022. "Grassland Aboveground Biomass Estimation through Assimilating Remote Sensing Data into a Grass Simulation Model" Remote Sensing 14, no. 13: 3194. https://doi.org/10.3390/rs14133194
APA StyleZhang, Y., Huang, J., Huang, H., Li, X., Jin, Y., Guo, H., Feng, Q., & Zhao, Y. (2022). Grassland Aboveground Biomass Estimation through Assimilating Remote Sensing Data into a Grass Simulation Model. Remote Sensing, 14(13), 3194. https://doi.org/10.3390/rs14133194