Using Remote Sensing to Identify Urban Fringe Areas and Their Spatial Pattern of Educational Resources: A Case Study of the Chengdu-Chongqing Economic Circle
Abstract
:1. Introduction
2. Study Area and Data Sources
3. Methods
3.1. Selection of Indicators and Grid Scales
3.2. Detection of Mutation Points
3.2.1. Spatially Continuous Wavelet Transform
3.2.2. Detection Process
3.3. Defining the Extent of UFAs
3.4. Analysis Method of Spatial Patterns
3.4.1. Density-Field-Based Hotspot Detector
3.4.2. Generalized Symmetric Structure Tupu
4. Results
4.1. Identification Results of UFAs
4.2. Spatial Pattern of Educational Resources
4.2.1. Spatial Distribution of Hotspots
4.2.2. Generalized Symmetric Structure Tupu of Hotspots
5. Discussion
5.1. Verification and Evaluation of UFA Identification Results
5.2. Interpretation of the Spatial Pattern of Educational Resources
5.3. Limitations and Future Study Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Feng, Y.; He, S.; Li, G. Interaction between urbanization and the eco-environment in the Pan-Third Pole region. Sci. Total Environ. 2021, 789, 148011. [Google Scholar] [CrossRef]
- Su, H.; Wei, H. A research on the misallocation and optimization of resources in China’s urbanization. Soc. Sci. Front. 2019, 10, 79–87, +281. [Google Scholar]
- Wei, G.; Zhang, Z.; Ouyang, X.; Shen, Y.; Jiang, S.; Liu, B.; He, B.-J. Delineating the spatial-temporal variation of air pollution with urbanization in the Belt and Road Initiative area. Environ. Impact Assess. Rev. 2021, 91, 106646. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Wang, X. Forms of Urban Expansion of Chinese Municipalities and Provincial Capitals, 1970s–2013. Remote Sens. 2016, 8, 930. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, P.; Kumar, A. Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics. Cities 2019, 90, 52–63. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Gough, W. Impact of urbanization on the nature of precipitation at Toronto, Ontario, Canada. J. Appl. Meteorol. Climatol. 2021, 60, 425–435. [Google Scholar] [CrossRef]
- Lu, Q.; Chang, N.-B.; Joyce, J.; Chen, A.; Savic, D.; Djordjević, S.; Fu, G. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Comput. Environ. Urban Syst. 2017, 68, 121–132. [Google Scholar] [CrossRef]
- Tu, R. A preliminary study on the urban fringe area—Taking Wuhan City as an example. Geogr. Geo-Inf. Sci. 1990, 6, 35–39. [Google Scholar]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P.; Zhang, X. Response of urban heat island to future urban expansion over the Beijing–Tianjin–Hebei metropolitan area. Appl. Geogr. 2016, 70, 26–36. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; Cai, D.; Hu, P.; Cui, H.; Yang, J.; Zhang, H. Exploration on the spatial spillover effect of infrastructure network on urbanization: A case study in Wuhan urban agglomeration. Sustain. Cities Soc. 2019, 47, 101476. [Google Scholar] [CrossRef]
- Louis, H. Die Geographische Gliederung von Gross-Berlin; Engelhorn Verlag: Stuttgart, Germany, 1936; pp. 146–171. [Google Scholar]
- Friedmann, J.; Miller, J. The urban field. J. Am. Inst. Plan. 1965, 31, 312–320. [Google Scholar] [CrossRef]
- Bryant, C.; Russwurm, L.H. The impact of non-farm development on agriculture—A synthesis. Plan Can. 1979, 19, 122–139. [Google Scholar]
- Huang, J.; Zhou, Q.; Wu, Z. Delineating urban fringe area by land cover information entropy—An empirical study of Guangzhou-Foshan metropolitan area, China. ISPRS Int. J. Geo-Inf. 2016, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Bai, R. Determination of zone feature in fringe of a big city based on fuzzy overall evaluation. J. China Agric. Univ. 2005, 10, 99–104. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Yao, Y.; He, Y.; Li, Z.; Yu, Q. Research on the division methods of spatial boundary in urban-rural fringe. J. Anhui Agric. Sci. 2010, 38, 995–998. [Google Scholar] [CrossRef]
- Li, S. A study on decision method of characteristic and property of urban fringe areas. Econ. Gography 2006, 26, 478–481. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Blaschke, T.; Zhang, Z.; Liu, Y.; Hu, Y.; Wang, M.; Zihan, X.; Wu, J. Integrating land development size, pattern, and density to identify urban–rural fringe in a metropolitan region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Kang, T.; Zhao, Y. Urban fringe division and feature analysis based on the multi-criterion judgment. J. Nat. Resour. 2011, 26, 703–714. [Google Scholar]
- Wang, H.; Zhang, X.; Zhao, Y. On determination methods for urban edge regions based on logistic regression model. Bull. Surv. Mapp. 2010, 46, 7–10. [Google Scholar]
- Yang, J.; Dong, J.; Sun, Y.; Zhu, J.; Huang, Y.; Yang, S. A constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data. Int. J. Geogr. Inf. Sci. 2021, 36, 114–136. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Luo, R.; Wu, Y. The definition of urban fringe based on multi-source data and deep learning. Geogr. Res. 2020, 39, 243–256. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, H. Discussion on the city’s border area of Beijing. J. Beijing Norm. Univ. 1995, 31, 127–133. [Google Scholar]
- Hu, S.; Tong, L.; Frazier, A.; Liu, Y. Urban boundary extraction and sprawl analysis using Landsat images: A case study in Wuhan, China. Habitat Int. 2015, 47, 183–195. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Lv, X.; Wang, X.; Zhao, Y. Explore basic method to classify urban fringe. J. Cent. China Norm. Univ. Nat. Sci. 2012, 46, 239–244. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Feng, Z. Methods of urban fringe definition in Beijing based on TM image. Remote Sens. Inf. 2010, 4, 100–104. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, Y.; Wu, K.; Hu, X. Study on the method for the demarcation of urban-rural fringe based on land use dynamic indicator. China Land Sci. 2012, 26, 60–65. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, X.; Zhang, L. Method to identify the urban-rural fringe by TM images. J. Remote Sens. 1999, 3, 199–202, +250. [Google Scholar]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Chao, T.; Li, W. Spatial recognition of the urban-rural fringe of Beijing using DMSP/OLS nighttime light data. Remote Sens. 2017, 9, 1141. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, A.; Guo, H. Spatial recognition of the urban-rural fringe based on DMSP/OLS nighttime light data: A case study of the main urban areas of Chongqing. Geogr. Geo-Inf. Sci. 2016, 32, 37–42. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Liu, Y.; Ma, J.; Zhao, S. A new approach for urban-rural fringe identification: Integrating impervious surface area and spatial continuous wavelet transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Jiang, Y.; Dou, Y. Research on the identification and spatial evolution of fringe area of oasis cities in arid region —Data analysis based on POI. Nat. Resour. Econ. China 2020, 33, 81–89. [Google Scholar] [CrossRef]
- Gu, C.; Chen, T.; Ding, J.; Yu, W. The study of the urban fringes in Chinese megalopolises. Acta Geogr. Sin. 1993, 48, 317–328. [Google Scholar]
- Qian, J.; Zhou, Y.; Yang, X. Confirmation of urban fringe area based on remote sensing and message entropy—A case study of Jingzhou, Hubei Province. Resour. Environ. Yangtze Basin 2007, 16, 451–455. [Google Scholar] [CrossRef]
- Cai, D.; Li, M.; Chen, Z.; Wei, W.; Hu, W. A method of division of urban fringe based on message entropy-A case study in Nanjing City. Sci. Surv. Mapp. 2010, 35, 106–109. [Google Scholar] [CrossRef]
- Ma, J.; Li, Q.; Ying, W. Identification of a rural-urban fringe based on wavelet transform—A case study of Wuhan. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 235–241. [Google Scholar] [CrossRef]
- Chang, S.; Jiang, Q.; Wang, Z.; Xu, S.; Jia, M. Extraction and spatial–temporal evolution of urban fringes: A case study of changchun in Jilin Province, China. ISPRS Int. J. Geo-Inf. 2018, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, Y.; Yang, H. Spatial recognition and boundary region division of urban fringe area in Xi’an City. J. Geo-Inf. Sci. 2017, 19, 1327–1335. [Google Scholar] [CrossRef]
- Dai, J.; Dong, J.; Yang, S.; Sun, Y. Identification method of urban fringe area based on spatial mutation characteristics. J. Geo-Inf. Sci. 2021, 23, 1401–1421. [Google Scholar]
- Gant, R.; Robinson, G.; Fazal, S. Land-use change in the ‘edgelands’: Policies and pressures in London’s rural–urban fringe. Land Use Policy 2011, 28, 266–279. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.; Li, Y.; Zhang, Y.; Li, X. Simulation of landscape spatial layout evolution in rural-urban fringe areas: A case study of Ganjingzi District. GISci. Remote Sens. 2019, 56, 388–405. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Zhu, T.; Qu, Y. Analysis on spatial-temporal heterogeneities of landscape fragmentation in urban fringe area: A case study in Shunyi district of Beijing. Acta Ecol. Sin. 2013, 33, 5363–5374. [Google Scholar] [CrossRef]
- Pei, Y.; Yang, J.; Li, B.; Li, X.; Ge, Y. Study on spatial-temporal differentiation of eological carrying capacity in urban fringe areas at community scale: A case study of Ganjingzi District in Dalian. Acta Ecol. Sin. 2019, 39, 1715–1724. [Google Scholar] [CrossRef]
- Yang, J.; Guan, Y.; Li, X.; Xi, J. Urban fringe area ecological vulnerability space-time evolution research: The case of Ganjingzi District, Dalian. Acta Ecol. Sin. 2018, 38, 778–787. [Google Scholar] [CrossRef] [Green Version]
- Xie, B. Study on the problems of compulsory education of migrant population’s children in the process of urbanization: A case study of urbanization transformation in Beijing’s urban fringe. Soc. Sci. Beijing 2013, 1, 21–25. [Google Scholar] [CrossRef]
- Liu, K.; Shi, R.; Kang, Z. Research on the layout planning method of fundamental education facility in urban fringe based on supply and demand. Areal Res. Dev. 2018, 37, 83–88. [Google Scholar] [CrossRef]
- Ledwith, V.; Reilly, K. Fringe benefits? Educational experiences of migrant and non-migrant youth in the urban-rural fringe of Galway City, Ireland. J. Rural Stud. 2014, 36, 219–225. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, J.; Su, F.; Yang, X.; Pei, T.; Ge, Y.; Yang, Y.; Zhang, A.; Liao, X.; Lu, F.; et al. Geographic information science development and technological application. Acta Geogr. Sin. 2020, 75, 2593–2609. [Google Scholar] [CrossRef]
- Gu, K. Exploring the fringe belt concept in Auckland: An urban morphological idea and planning practice. N. Z. Geogr. 2010, 66, 44–60. [Google Scholar] [CrossRef]
- Sharp, J.; Clark, J. Between the country and the concrete: Rediscovering the rural-urban fringe. City Community 2008, 7, 61–79. [Google Scholar] [CrossRef]
- Dutilleul, P.; Legendre, P. Spatial Heterogeneity against Heteroscedasticity: An Ecological Paradigm versus a Statistical Concept. Oikos 1993, 66, 152. [Google Scholar] [CrossRef]
- Escalante, N.; Hernández, J.d.J.; De la Rosa, J.; Rosa, E.; Gonzalez Ramirez, E.; Gutiérrez, O.; Olvera-Olvera, C.; Araiza, M. 2-D Continuous Wavelet Transform for ESPI phase-maps denoising. Opt. Lasers Eng. 2013, 51, 1060–1065. [Google Scholar] [CrossRef]
- Pérez-Rendón, A.; Robles, R. The convolution theorem for the continuous wavelet tranform. Signal Process. 2004, 84, 55–67. [Google Scholar] [CrossRef]
- Calonico, S.; Cattaneo, M.; Farrell, M. On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference. J. Am. Stat. Assoc. 2015, 113, 767–779. [Google Scholar] [CrossRef]
- Silverman, B. Density Estimation for Statistics and Data Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 1986; Volume 26. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Tang, G.; Zhou, L.; Ye, X. Hotspot discovery and its spatial pattern analysis for catering service in cities based on field model in GIS. Geogr. Res. 2020, 39, 354–369. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Chen, S.; Yue, T.; Li, H. Studies on Geo-Informatic Tupu and its application. Geogr. Res. 2000, 19, 337–343. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2019, 701, 134690. [Google Scholar] [CrossRef]
- Du, C.; Liu, Y.; Guo, X.; Xu, C. Analysis and research on the temporal and spatial changes of land use in Zhaozhou County based on Geo-information Tupu. IOP Conf. Ser. Earth Environ. Sci. 2020, 510, 062022. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, F.; Fang, C.; Liu, C. Dynamics of the surface thermal landscape (STL) in northern slope of central Tianshan mountains, Xinjiang, NW China from 2000 to 2018. Environ. Sci. Pollut. Res. 2020, 27, 22033–22045. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, J.; Liu, C.; Li, Y. Hotspot detection and spatiotemporal evolution of catering service grade in mountainous cities from the perspective of Geo-information Tupu. Int. J. Geo-Inf. 2021, 10, 287. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GISci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Bennett, M.; Smith, L. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Luo, Z.; Gao, X.; Zhang, Y.; Li, L. Research on the spatial pattern and influencing factors of urban shadow education institutions based on POI data: A case of Lanzhou. Hum. Geogr. 2020, 35, 95–105. [Google Scholar] [CrossRef]
- Yuan, Z.; Guo, J.; Yang, Y.; Zhu, H. Analysis of the spatial structure, mechanism and social-political effects of the high-quality basic educational resources in China. Acta Geogr. Sin. 2020, 75, 318–331. [Google Scholar] [CrossRef]
Dataset | Time | Data Type | Spatial Resolution | Data Source |
---|---|---|---|---|
Administrative divisions | 2020 | Vector | None | https://www.webmap.cn, accessed on 10 February 2021 |
Land use | 2020 | Raster | 30 m | http://www.globallandcover.com, accessed on 11 May 2021 |
POI | 2020 | Vector | None | https://lbs.amap.com, accessed on 26 December 2020 |
Urban boundaries | 2018 | Vector | None | http://data.ess.tsinghua.edu.cn, accessed on 10 September 2021 |
NPP-VIIRS-like NTL | 2020 | Raster | 500 m | https://doi.org/10.7910/DVN/YGIVCD, accessed on 18 June 2021 |
Scale/m × m | C0 | C + C0 | C0/(C + C0) | A | r |
---|---|---|---|---|---|
250 | 0.0026 | 0.0189 | 0.14 | 825 | 0.9103 |
500 | 0.0042 | 0.0119 | 0.26 | 1542 | 0.8539 |
750 | 0.0019 | 0.0113 | 0.14 | 1785 | 0.8250 |
1000 | 0.0021 | 0.0140 | 0.13 | 2245 | 0.7989 |
City | Urban Area (Km2) | UFA (Km2) | Rural Area (Km2) | Total Area (Km2) |
---|---|---|---|---|
Chengdu | 1799.33 | 6878.71 | 5663.34 | 14,335.38 |
Mianyang | 356.21 | 1490.25 | 9573.38 | 11,419.84 |
Dazhou | 102.26 | 1471.24 | 10,958.59 | 12,532.09 |
Deyang | 293.79 | 1758.69 | 3893.26 | 5945.74 |
Guang’an | 140.54 | 493.73 | 5723.20 | 6357.47 |
Leshan | 167.64 | 1576.59 | 10,990.96 | 12,735.19 |
Luzhou | 132.51 | 1002.55 | 11,104.13 | 12,239.19 |
Meishan | 191.42 | 1250.97 | 5686.77 | 7129.16 |
Nanchong | 301.27 | 1064.58 | 11,101.78 | 12,467.63 |
Neijiang | 103.75 | 666.07 | 4591.95 | 5361.77 |
Suining | 188.06 | 446.02 | 4687.61 | 5321.69 |
Ya’an | 16.08 | 282.17 | 9241.35 | 9539.60 |
Yibin | 17.12 | 1449.95 | 11,791.93 | 13,259.00 |
Ziyang | 111.76 | 295.59 | 5339.00 | 5746.35 |
Zigong | 107.05 | 377.99 | 3887.75 | 4372.79 |
A1 | 1058.65 | 2940.66 | 1467.66 | 5466.97 |
A2 | 632.75 | 5466.12 | 17,096.49 | 23,195.36 |
A3 | 181.17 | 617.66 | 16,902.06 | 17,700.89 |
Region | Grade | Number of Hotspots | Proportion | Mean Density |
---|---|---|---|---|
UFAs of Chengdu | I | 29 | 24.78% | 0.048 |
II | 34 | 29.06% | 0.096 | |
III | 31 | 26.50% | 0.14 | |
IV | 12 | 10.26% | 0.21 | |
V | 11 | 9.40% | 0.31 | |
UFAs of Chongqing | I | 23 | 10.26% | 0.009 |
II | 54 | 24.12% | 0.029 | |
III | 67 | 29.91% | 0.05 | |
IV | 62 | 27.68% | 0.075 | |
V | 18 | 8.03% | 0.106 |
City | Parameters | Urban Area (nW/cm2/sr) | UFA (nW/cm2/sr) | Rural Area (nW/cm2/sr) |
---|---|---|---|---|
Chengdu | mean | 24.15 | 2.84 | 0.12 |
std | 17.27 | 4.47 | 0.64 | |
Chongqing | mean | 18.15 | 1.99 | 0.09 |
std | 12.07 | 3.49 | 0.80 | |
Leshan | mean | 10.77 | 1.53 | 0.03 |
std | 8.42 | 2.61 | 0.39 | |
Dazhou | mean | 22.69 | 1.54 | 0.03 |
std | 16.13 | 4.01 | 0.51 | |
Guang’an | mean | 18.84 | 2.45 | 0.09 |
std | 12.40 | 3.96 | 0.54 | |
Ya’an | mean | 17.13 | 2.33 | 0.09 |
std | 7.14 | 3.96 | 1.01 |
City | Number of Sample Points | Accuracy |
---|---|---|
Chengdu | 150 | 74% |
Chongqing | 150 | 77% |
Leshan | 100 | 74% |
Dazhou | 100 | 72% |
Guang’an | 50 | 76% |
Ya’an | 50 | 72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Li, Y.; Zhao, R.; Wang, Y. Using Remote Sensing to Identify Urban Fringe Areas and Their Spatial Pattern of Educational Resources: A Case Study of the Chengdu-Chongqing Economic Circle. Remote Sens. 2022, 14, 3148. https://doi.org/10.3390/rs14133148
Lu W, Li Y, Zhao R, Wang Y. Using Remote Sensing to Identify Urban Fringe Areas and Their Spatial Pattern of Educational Resources: A Case Study of the Chengdu-Chongqing Economic Circle. Remote Sensing. 2022; 14(13):3148. https://doi.org/10.3390/rs14133148
Chicago/Turabian StyleLu, Wei, Yuechen Li, Rongkun Zhao, and Yue Wang. 2022. "Using Remote Sensing to Identify Urban Fringe Areas and Their Spatial Pattern of Educational Resources: A Case Study of the Chengdu-Chongqing Economic Circle" Remote Sensing 14, no. 13: 3148. https://doi.org/10.3390/rs14133148
APA StyleLu, W., Li, Y., Zhao, R., & Wang, Y. (2022). Using Remote Sensing to Identify Urban Fringe Areas and Their Spatial Pattern of Educational Resources: A Case Study of the Chengdu-Chongqing Economic Circle. Remote Sensing, 14(13), 3148. https://doi.org/10.3390/rs14133148