Sea Ice–Water Classification of RADARSAT-2 Imagery Based on Residual Neural Networks (ResNet) with Regional Pooling
Abstract
:1. Introduction
- We propose a novel end-to-end sea ice–water classification system based on a deep learning model using SAR imagery. One of the major attractions of the proposed system is that it can generate a pixel-level classification result while the fine boundaries between ice and water are well preserved.
- We explore the classification capability of a deep learning model with different input and patch sizes. The results obtained by the deep learning model with different hyper-parameters provide a baseline reference for future work.
- We extensively evaluate the performance of the proposed model and compare it with two benchmark methods and two reference methods. The results show that our model outperforms these methods of comparison both numerically and visually.
2. Data
2.1. The RADARSAT-2 ScanSAR Wide Mode Dataset
2.2. Data Pre-Processing
2.3. Dataset for Training and Validation
3. Method
3.1. Unsupervised Model for Segmentation
3.2. Deep Learning Model for Labeling
3.3. Framework of Ice–Water Classification
3.4. Regional Pooling Layer
3.5. Comparative Methods
4. Results and Discussion
4.1. Classification Accuracy
4.2. Ice–Water Maps
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Bobylev, L.P.; Miles, M.W. Sea Ice in the Arctic Paleoenvironments. In Sea Ice in the Arctic; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–56. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Khon, V.C.; Mokhov, I.; Latif, M.; Semenov, V.A.; Park, W. Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Clim. Chang. 2010, 100, 757–768. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Satellite SAR data-based sea ice classification: An overview. Geosciences 2019, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- White, L.; Millard, K.; Banks, S.; Richardson, M.; Pasher, J.; Duffe, J. Moving to the RADARSAT constellation mission: Comparing synthesized compact polarimetry and dual polarimetry data with fully polarimetric RADARSAT-2 data for image classification of peatlands. Remote Sens. 2017, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- De Lisle, D.; Iris, S.; Arsenault, E.; Smyth, J.; Kroupnik, G. RADARSAT Constellation Mission status update. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; VDE: Berlin, Germany, 2018; pp. 1–5. [Google Scholar]
- Dierking, W. Mapping of Different Sea Ice Regimes Using Images From Sentinel-1 and ALOS Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1045–1058. [Google Scholar] [CrossRef]
- Holland, P.R.; Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 2012, 5, 872–875. [Google Scholar] [CrossRef]
- Anderson, H.S.; Long, D.G. Sea ice mapping method for SeaWinds. IEEE Trans. Geosci. Remote Sens. 2005, 43, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Scheuchl, B.; Caves, R.; Cumming, I.; Staples, G. Automated sea ice classification using spaceborne polarimetric SAR data. IGARSS 2001. Scanning the Present and Resolving the Future. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, Ausralia, 9–13 July 2001; Volume 7, pp. 3117–3119. [Google Scholar] [CrossRef] [Green Version]
- Makynen, M.; Manninen, A.T.; Simila, M.; Karvonen, J.A.; Hallikainen, M.T. Incidence angle dependence of the statistical properties of C-band HH-polarization backscattering signatures of the Baltic Sea ice. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2593–2605. [Google Scholar] [CrossRef]
- Lang, W.; Zhang, P.; Wu, J.; Shen, Y.; Yang, X. Incidence angle correction of SAR sea ice data based on locally linear mapping. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3188–3199. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Geldsetzer, T.; Howell, S.E.; Yackel, J.J.; Nandan, V.; Scharien, R.K. Incidence angle dependence of HH-polarized C-and L-band wintertime backscatter over Arctic sea ice. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6686–6698. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Wenbo, W.; Yusong, W.; Xue, D.; Xiaotong, J.; Yida, K.; Xiangli, W. Sea ice classification of SAR image based on wavelet transform and gray level co-occurrence matrix. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; pp. 104–107. [Google Scholar] [CrossRef]
- De Gelis, I.; Colin, A.; Longépé, N. Prediction of categorized Sea Ice Concentration from Sentinel-1 SAR images based on a Fully Convolutional Network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5831–5841. [Google Scholar] [CrossRef]
- Singha, S.; Johansson, M.; Hughes, N.; Hvidegaard, S.M.; Skourup, H. Arctic Sea Ice Characterization Using Spaceborne Fully Polarimetric L-, C-, and X-Band SAR With Validation by Airborne Measurements. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3715–3734. [Google Scholar] [CrossRef]
- Moen, M.A.; Anfinsen, S.N.; Doulgeris, A.P.; Renner, A.; Gerland, S. Assessing polarimetric SAR sea-ice classifications using consecutive day images. Ann. Glaciol. 2015, 56, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Ressel, R.; Singha, S. Comparing near coincident space borne C and X band fully polarimetric SAR data for Arctic sea ice classification. Remote Sens. 2016, 8, 198. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.P.; Yackel, J.J. Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types. Can. J. Remote Sens. 2012, 38, 306–323. [Google Scholar] [CrossRef]
- Dabboor, M.; Montpetit, B.; Howell, S. Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization. Remote Sens. 2018, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, M.; Clausi, D.A.; Xu, L.; Jiang, M. Contextual classification of sea-ice types using compact polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7476–7491. [Google Scholar] [CrossRef]
- Li, F.; Clausi, D.A.; Xu, L.; Wong, A. ST-IRGS: A region-based self-training algorithm applied to hyperspectral image classification and segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 56, 3–16. [Google Scholar] [CrossRef]
- Soh, L.K.; Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef] [Green Version]
- Murashkin, D.; Spreen, G.; Huntemann, M.; Dierking, W. Method for detection of leads from Sentinel-1 SAR images. Ann. Glaciol. 2018, 59, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xia, L.; Song, D.; Li, Z.; Wang, N. A Two-Round Weight Voting Strategy-Based Ensemble Learning Method for Sea Ice Classification of Sentinel-1 Imagery. Remote Sens. 2021, 13, 3945. [Google Scholar] [CrossRef]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Li, X.M.; Sun, Y.; Zhang, Q. Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3040–3053. [Google Scholar] [CrossRef]
- Lyu, H.; Huang, W.; Mahdianpari, M. Sea Ice Detection From the RADARSAT Constellation Mission Experiment Data. In Proceedings of the 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Virtual, 12–17 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Liu, Y.; Hong, Z.; Zhang, Y.; Yang, S.; Wang, J. Sea Ice Image Classification Based on Heterogeneous Data Fusion and Deep Learning. Remote Sens. 2021, 13, 592. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Shokr, M.; Mi, C.; Li, X.M.; Cheng, X.; Hui, F. Deep Learning Based Sea Ice Classification with Gaofen-3 Fully Polarimetric SAR Data. Remote Sens. 2021, 13, 1452. [Google Scholar] [CrossRef]
- Boulze, H.; Korosov, A.; Brajard, J. Classification of sea ice types in Sentinel-1 SAR data using convolutional neural networks. Remote Sens. 2020, 12, 2165. [Google Scholar] [CrossRef]
- Asadi, N.; Scott, K.A.; Komarov, A.S.; Buehner, M.; Clausi, D.A. Evaluation of a Neural Network With Uncertainty for Detection of Ice and Water in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 247–259. [Google Scholar] [CrossRef]
- Song, W.; Li, M.; Gao, W.; Huang, D.; Ma, Z.; Liotta, A.; Perra, C. Automatic Sea-Ice Classification of SAR Images Based on Spatial and Temporal Features Learning. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Chi, J.; Bae, J.; Kwon, Y.J. Two-Stream Convolutional Long-and Short-Term Memory Model Using Perceptual Loss for Sequence-to-Sequence Arctic Sea Ice Prediction. Remote Sens. 2021, 13, 3413. [Google Scholar] [CrossRef]
- Jobanputra, R.; Clausi, D.A. Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recognit. 2006, 39, 234–245. [Google Scholar] [CrossRef]
- Yu, Q.; Clausi, D.A. IRGS: Image segmentation using edge penalties and region growing. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2126–2139. [Google Scholar] [CrossRef]
- Leigh, S.; Wang, Z.; Clausi, D.A. Automated ice–water classification using dual polarization SAR satellite imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5529–5539. [Google Scholar] [CrossRef]
- Jiang, M.; Clausi, D.A.; Xu, L. Sea Ice Mapping of RADARSAT-2 Imagery by Integrating Spatial Contexture with Textural Features. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, unpublished. [Google Scholar]
- Luscombe, A. RADARSAT-2 SAR image quality and calibration operations. Can. J. Remote Sens. 2004, 30, 345–354. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sens. 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Lohse, J.; Doulgeris, A.P.; Dierking, W. Mapping sea-ice types from Sentinel-1 considering the surface-type dependent effect of incidence angle. Ann. Glaciol. 2020, 61, 260–270. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, T.; Spreen, G.; Melsheimer, C.; Huntemann, M.; Hughes, N.; Zhang, S.; Li, F. Sea ice and water classification on dual-polarized Sentinel-1 imagery during melting season. Cryosphere Discuss. 2021, 1–26. [Google Scholar] [CrossRef]
- Wang, Y.R.; Li, X.M. Arctic sea ice cover data from spaceborne SAR by deep learning. Earth Syst. Sci. Data Discuss 2020, 2020, 1–30. [Google Scholar] [CrossRef]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hoekstra, M.; Jiang, M.; Clausi, D.A.; Duguay, C. Lake Ice-Water Classification of RADARSAT-2 Images by Integrating IRGS Segmentation with Pixel-Based Random Forest Labeling. Remote Sens. 2020, 12, 1425. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Gu, X.; Guo, H.; Chen, J.; Liu, G. Sea Ice Classification Using TerraSAR-X ScanSAR Data With Removal of Scalloping and Interscan Banding. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2019, 12, 589–598. [Google Scholar] [CrossRef]
Scene ID | SAR Acquisition Date (M/D/Y) | Acquisition Time UTC (hh:mm:ss) | Ascending (A)/ Descending (D) | Incidence Angle Near Range (°) | Incidence Angle Far Range (°) |
---|---|---|---|---|---|
20100418_163315 | 18 April 2010 | 16:33:16 | Descending | 19.72 | 49.46 |
20100426_040439 | 16 April 2010 | 04:04:39 | Ascending | 19.55 | 49.44 |
20100510_035620 | 10 May 2010 | 03:56:20 | Ascending | 19.58 | 49.44 |
20100524_034756 | 24 May 2010 | 03:47:56 | Ascending | 19.61 | 49.46 |
20100605_163323 | 5 June 2010 | 16:33:23 | Descending | 19.77 | 49.46 |
20100623_041255 | 23 June 2010 | 04:12:55 | Ascending | 19.63 | 49.45 |
20100629_163326 | 29 June 2010 | 16:33:26 | Descending | 19.71 | 49.43 |
20100712_031834 | 12 July 2010 | 03:18:34 | Ascending | 19.61 | 49.39 |
20100721_173208 | 21 July 2010 | 17:32:08 | Descending | 19.64 | 49.47 |
20100730_162908 | 30 July 2010 | 16:29:08 | Descending | 19.61 | 49.46 |
20100807_173610 | 7 August 2010 | 17:36:10 | Descending | 19.77 | 49.47 |
20100816_163329 | 16 August 2010 | 16:33:29 | Descending | 19.74 | 49.45 |
20100907_035614 | 7 September 2010 | 03:56:14 | Ascending | 19.59 | 49.44 |
20100909_163321 | 9 September 2010 | 16:33:21 | Descending | 19.63 | 49.48 |
20101003_163324 | 3 October 2010 | 16:33:24 | Descending | 19.59 | 49.46 |
20101021_041325 | 21 October 2010 | 04:13:25 | Ascending | 19.50 | 49.43 |
20101027_025726 | 27 October 2010 | 02:57:26 | Ascending | 19.58 | 49.43 |
20101114_041304 | 14 November 2010 | 04:13:04 | Ascending | 19.57 | 49.43 |
20101120_163324 | 20 November 2010 | 16:33:24 | Descending | 19.70 | 49.44 |
20101206_015139 | 6 December 2010 | 01:51:39 | Ascending | 19.59 | 49.39 |
20101214_025725 | 14 December 2010 | 02:57:25 | Ascending | 19.58 | 49.45 |
Scene ID | # of Water | # of Ice |
---|---|---|
20100418_163315 | 0 | 38,323 |
20100426_040439 | 0 | 49,484 |
20100510_035620 | 3071 | 54,899 |
20100524_034756 | 9307 | 50,780 |
20100605_163323 | 1388 | 52,588 |
20100623_041255 | 21,569 | 42,362 |
20100629_163326 | 6564 | 26,190 |
20100712_031834 | 5072 | 24,702 |
20100721_173208 | 10,002 | 12,638 |
20100730_162908 | 9919 | 8551 |
20100807_173610 | 9092 | 2680 |
20100816_163329 | 12,866 | 10,689 |
20100907_035614 | 24,201 | 0 |
20100909_163321 | 23,094 | 1598 |
20101003_163324 | 18,605 | 8414 |
20101021_041325 | 25,138 | 8554 |
20101027_025726 | 13,230 | 14,334 |
20101114_041304 | 8219 | 13,597 |
20101120_163324 | 0 | 47,944 |
20101206_015139 | 0 | 47,850 |
20101214_025725 | 0 | 40,658 |
Total | 201,338 | 556,837 |
Input Channel | HH | HV | HH/HV |
---|---|---|---|
Validation Accuracy | 93.82% | 95.93% | 98.65% |
Scene ID | Single Model | Combined Model | |||||||
---|---|---|---|---|---|---|---|---|---|
ResNet | RF | IRGS-ResNet | SVM-IRGS | IRGS-RF | |||||
Patch | Patch | Patch | Patch | Patch | Patch | ||||
20100418_163315 | 98.28% | 99.87% | 99.84% | 98.86% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
20100426_040439 | 99.41% | 99.80% | 99.89% | 98.93% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
20100510_035620 | 98.46% | 99.65% | 99.94% | 98.91% | 100.00% | 100.00% | 100.00% | 99.49% | 100.00% |
20100524_034756 | 97.90% | 98.93% | 99.08% | 97.06% | 98.25% | 98.29% | 98.29% | 98.52% | 98.30% |
20100605_163323 | 98.65% | 98.94% | 99.78% | 97.61% | 98.45% | 98.45% | 99.99% | 99.32% | 97.68% |
20100623_041255 | 99.23% | 99.54% | 99.66% | 97.84% | 99.79% | 99.99% | 100.00% | 98.31% | 99.80% |
20100629_163326 | 98.90% | 99.26% | 99.75% | 90.93% | 99.52% | 99.61% | 99.48% | 96.10% | 99.93% |
20100712_031834 | 97.61% | 98.43% | 99.18% | 98.65% | 100.00% | 100.00% | 99.71% | 95.74% | 98.21% |
20100721_173208 | 99.79% | 100.00% | 100.00% | 98.41% | 97.99% | 97.99% | 97.99% | 95.25% | 97.99% |
20100730_162908 | 91.99% | 97.76% | 99.58% | 72.82% | 98.91% | 99.88% | 100.00% | 93.05% | 73.34% |
20100807_173610 | 86.44% | 98.54% | 99.69% | 96.97% | 100.00% | 100.00% | 100.00% | 92.49% | 100.00% |
20100816_163329 | 78.08% | 93.35% | 97.90% | 76.82% | 82.02% | 99.58% | 100.00% | 75.63% | 77.47% |
20100907_035614 | 99.56% | 99.93% | 99.97% | 99.04% | 100.00% | 100.00% | 100.00% | 99.78% | 100.00% |
20100909_163321 | 99.61% | 99.97% | 100.00% | 97.89% | 97.59% | 97.61% | 97.61% | 94.70% | 97.59% |
20101003_163324 | 92.87% | 99.10% | 99.63% | 94.29% | 99.96% | 100.00% | 100.00% | 96.65% | 98.37% |
20101021_041325 | 95.21% | 98.86% | 99.77% | 95.07% | 99.48% | 99.71% | 99.71% | 97.04% | 98.83% |
20101027_025726 | 98.48% | 99.30% | 99.45% | 97.82% | 99.71% | 99.75% | 99.76% | 96.70% | 99.78% |
20101114_041304 | 92.24% | 97.79% | 99.45% | 92.74% | 98.15% | 98.80% | 99.05% | 95.24% | 95.59% |
20101120_163324 | 97.49% | 99.41% | 99.91% | 96.21% | 100.00% | 100.00% | 100.00% | 100.00% | 97.56% |
20101206_015139 | 97.47% | 99.18% | 99.60% | 97.01% | 99.84% | 100.00% | 99.99% | 100.00% | 99.99% |
20101214_025725 | 95.63% | 99.07% | 99.77% | 96.30% | 100.00% | 100.00% | 100.00% | 100.00% | 99.77% |
Overall | 97.03% | 99.07% | 99.65% | 96.19% | 98.89% | 99.46% | 99.67% | 96.28% | 97.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Xu, L.; Clausi, D.A. Sea Ice–Water Classification of RADARSAT-2 Imagery Based on Residual Neural Networks (ResNet) with Regional Pooling. Remote Sens. 2022, 14, 3025. https://doi.org/10.3390/rs14133025
Jiang M, Xu L, Clausi DA. Sea Ice–Water Classification of RADARSAT-2 Imagery Based on Residual Neural Networks (ResNet) with Regional Pooling. Remote Sensing. 2022; 14(13):3025. https://doi.org/10.3390/rs14133025
Chicago/Turabian StyleJiang, Mingzhe, Linlin Xu, and David A. Clausi. 2022. "Sea Ice–Water Classification of RADARSAT-2 Imagery Based on Residual Neural Networks (ResNet) with Regional Pooling" Remote Sensing 14, no. 13: 3025. https://doi.org/10.3390/rs14133025
APA StyleJiang, M., Xu, L., & Clausi, D. A. (2022). Sea Ice–Water Classification of RADARSAT-2 Imagery Based on Residual Neural Networks (ResNet) with Regional Pooling. Remote Sensing, 14(13), 3025. https://doi.org/10.3390/rs14133025