Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Surface Albedo
2.1.2. Skin Temperature
2.1.3. Sea Ice Concentration (SIC)
2.1.4. Radiative Kernels
2.2. Method
3. Results and Discussion
3.1. Annual Characteristic of SIRFs in the Arctic
3.2. Seasonal Characteristic of SIRFs in the Arctic
3.3. Monthly Characteristic of SIRFs in the Arctic
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GCOS. Snow: Essential Climate Variable (ECV) Factsheet. 2022. Available online: https://gcos.wmo.int/en/essential-climate-variables/sea-ice/ (accessed on 26 April 2022).
- Ledley, T.S. A coupled energy balance climate-sea ice model: Impact of sea ice and leads on climate. J. Geophys. Res. Atmos. 1988, 93, 15919–15932. [Google Scholar] [CrossRef]
- Manabe, S.; Wetherald, R.T. The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model. J. Atmos. Sci. 1975, 32, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The emergence of surface-based arctic amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [Green Version]
- Cowtan, K.; Way, R.G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 2014, 140, 1935–1944. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627. [Google Scholar] [CrossRef] [Green Version]
- Hoffert, M.I.; Covey, C. Deriving Global Climate Sensitivity from Paleoclimate Reconstructions. Nature 1992, 360, 573–576. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.H.; Alley, R.B.; Brigham-Grette, J.; Fitzpatrick, J.J.; Polyak, L.; Serreze, M.C.; White, J.W.C. Arctic amplification: Can the past constrain the future? Quat. Sci. Rev. 2010, 29, 1779–1790. [Google Scholar] [CrossRef]
- Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 2010, 23, 3888–3906. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.; Wang, M. Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep. 2016, 6, 19219. [Google Scholar] [CrossRef] [Green Version]
- Blunden, J.; Arndt, D.S. State of the Climate in 2018. Bull. Am. Meteorol. Soc. 2019, 100, Si-S306. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- Davy, R.; Outten, S. The arctic surface climate in CMIP6: Status and developments since CMIP5. J. Clim. 2020, 33, 8047–8068. [Google Scholar] [CrossRef]
- Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Scattering Mechanism Based Snow Cover Mapping Using RADARSAT-2 C-Band Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3213–3224. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Muhuri, A.; De, S.; Manickam, S.; Frery, A.C. Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3497–3506. [Google Scholar] [CrossRef] [Green Version]
- Nature, Arctic Sea Ice Hits 2021 Minimum. 2022. Available online: https://www.nature.com/articles/d41586-021-02649-6 (accessed on 26 April 2022).
- Peng, G.; Matthews, J.L.; Wang, M.; Vose, R.; Sun, L. What Do Global Climate Models Tell Us about Future Arctic Sea Ice Coverage Changes? Climate 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Hankel, C.; Tziperman, E. The Role of Atmospheric Feedbacks in Abrupt Winter Arctic Sea Ice Loss in Future Warming Scenarios. J. Clim. 2021, 34, 4435–4447. [Google Scholar] [CrossRef]
- Mioduszewski, J.R.; Vavrus, S.; Wang, M.; Holland, M.; Landrum, L. Past and future interannual variability in Arctic sea ice in coupled climate models. Cryosphere 2019, 13, 113–124. [Google Scholar] [CrossRef] [Green Version]
- CMIP. Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086749. [Google Scholar] [CrossRef]
- Stroeve, J.; Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Hall, A. The role of surface albedo feedback in climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Colman, R.; Kattsov, V.M.; Allan, R.P.; Bretherton, C.S.; Dufresne, J.L.; Hall, A.; Soden, B.J.; Tselioudis, G.; Webb, M.J. How well do we understand and evaluate climate change feedback processes? J. Clim. 2006, 191, 3445–3482. [Google Scholar] [CrossRef] [Green Version]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; Lecomte, O.; Massonnet, F.; et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef] [PubMed]
- Thackeray, C.W.; Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 2019, 9, 972–978. [Google Scholar] [CrossRef]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, S.; Chen, X.; He, T. Assessment of sea ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data. J. Clim. 2015, 28, 1248–1259. [Google Scholar] [CrossRef]
- Xiao, L.; Che, T.; Chen, L.; Xie, H.; Dai, L. Quantifying Snow Albedo Radiative Forcing and Its Feedback during 2003–2016. Remote Sens. 2017, 9, 883. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, S.; Cao, Y. Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013. Environ. Res. Lett. 2016, 11, 084002. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Yin, C. Contribution of Changes in Snow Cover Extent to Shortwave Radiation Perturbations at the Top of the Atmosphere over the Northern Hemisphere during 2000–2019. Remote Sens. 2021, 13, 4938. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Liang, S.; He, T.; Chen, X. Evaluation of Four Reanalysis Surface Albedo Data Sets in Arctic Using a Satellite Product. IEEE Geosci. Remote Sens. Lett. 2016, 13, 384–388. [Google Scholar] [CrossRef]
- Pistone, K.; Eisenman, I.; Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA 2014, 111, 3322–3326. [Google Scholar] [CrossRef] [Green Version]
- Marcianesi, F.; Aulicino, G.; Wadhams, P. Arctic sea ice and snow cover albedo variability and trends during the last three decades. Polar Sci. 2021, 28, 100617. [Google Scholar] [CrossRef]
- Wang, X.; Key, J.R. Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder data set. Part I: Spatial and temporal characteristics. J. Clim. 2005, 18, 2558–2574. [Google Scholar] [CrossRef] [Green Version]
- Shell, K.M.; Kiehl, J.; Shields, C.A. Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J. Clim. 2008, 21, 2269–2282. [Google Scholar] [CrossRef]
- Kumar, A.; Perlwitz, J.; Eischeid, J.; Quan, X.; Xu, T.; Zhang, T.; Hoerling, M.; Jha, B.; Wang, W. Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett. 2010, 37, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Haine, T.W.N.; Martin, T. The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification. Sci. Rep. 2017, 7, 4618. [Google Scholar] [CrossRef]
- Tsuang, B.J.; Tu, C.Y.; Tsai, J.L.; Dracup, J.; Arpe, K.; Meyers, T. A more accurate scheme for calculating Earth’s skin temperature. Clim. Dyn. 2009, 32, 251–272. [Google Scholar] [CrossRef] [Green Version]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary cliamte models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Conley, A.; Vitt, F.M. Surface and Top-of-Atmosphere Radiative Feedback Kernels for CESM-CAM5. Earth Syst. Sci. Data 2018, 10, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Kramer, R.J.; Myhre, G.; Forster, P.M.; Soden, B.J.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaschner, D.; Hodnebrog, O.; et al. Understanding Rapid Adjustments to Diverse Forcing Agents. Geophys. Res. Lett. 2018, 45, 12023–12031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.J.; Kramer, R.J.; Sima, A. The HadGEM3-GA7. 1 radiative kernel: The importance of a well-resolved stratosphere. Earth Syst. Sci. Data 2020, 12, 2157–2168. [Google Scholar] [CrossRef]
- Soden, B.J.; Held, I.M.; Colman, R.; Shell, K.M.; Kiehl, J.T.; Shields, C.A. Quantifying climate feedbacks using radia-tive kernels. J. Clim. 2008, 21, 3504–3520. [Google Scholar] [CrossRef]
- Stevens, B.; Giorgetta, M.A.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Block, K.; et al. Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Seo, M.; Kim, H.C.; Lee, K.S.; Seong, N.H.; Lee, E.; Kim, J.; Han, K.S. Characteristics of the Reanalysis and Satellite-Based Surface Net Radiation Data in the Arctic. J. Sens. 2020, 2020, 8825870. [Google Scholar] [CrossRef]
- Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Bliss, A.C.; Steele, M.; Peng, G.; Meier, W.N.; Dickson, S. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record. Environ. Res. Lett. 2019, 14, 045003. [Google Scholar] [CrossRef]
- Bintanja, R.; van der Linden, E. The changing seasonal climate in the Arctic. Sci. Rep. 2013, 3, 1556. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.G.; Anttila, K.; Trentmann, J.; Stengel, M.; Meirink, J.F.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef] [Green Version]
- Riihelä, A.; Laine, V.; Manninen, T.; Palo, T.; Vihma, T. Validation of the Climate-SAF surface broadband albedo product: Comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean. Remote Sens. Environ. 2010, 114, 2779–2790. [Google Scholar] [CrossRef]
- Climate Data Store. ERA5-Land Hourly Data from 1950 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (accessed on 27 April 2022).
- Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Clim. 2014, 27, 2588–2606. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Xiao, W.; Zhang, Z.; Cheng, X.; Hui, F.; Zhao, J. Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the arctic during 2010–2020. Remote Sens. 2021, 13, 2813. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [CrossRef]
- Cavalieri, D.J.; Crawford, J.P.; Drinkwater, M.R.; Eppler, D.T.; Farmer, L.D.; Jentz, R.R.; Wackerman, C.C. Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Program Special Sensor Microwave Imager. J. Geophys. Res. 1991, 96, 21989–22008. [Google Scholar] [CrossRef]
- Ivanova, N.; Johannessen, O.M.; Pedersen, L.T.; Tonboe, R.T. Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Rem. Sens. 2014, 52, 723–7246. [Google Scholar] [CrossRef]
- Meier, W.N. Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in the Arctic peripheral seas. IEEE Trans. Geosci. Rem. Sens. 2005, 43, 1324–1337. [Google Scholar] [CrossRef]
- Maslanik, J.A. Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data. Int. J. Remote Sens. 1992, 13, 37–54. [Google Scholar] [CrossRef]
- National Center for Environmental Information. Regional Sea Ice. Available online: https://www.ncdc.noaa.gov/snow-and-ice/regional-sea-ice/overview (accessed on 27 April 2022).
- Bright, R.M.; O’Halloran, T.L. Developing a Monthly Radiative Kernel for Surface Albedo Change from Satellite Climatologies of Earth’s Shortwave Radiation Budget: CACK V1.0. Geosci. Model Dev. 2019, 12, 3975–3990. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Long, D.; Hong, Y.; Liang, S.; Hou, A. Observed radiative cooling over the Tibetan Plateau for the past three decades driven by snow-cover-induced surface albedo anomaly. J. Geophys. Res. 2017, 122, 6170–6185. [Google Scholar] [CrossRef]
- Jonko, A.K.; Shell, K.M.; Sanderson, B.M.; Danabasoglu, G. Climate feedbacks in CCSM3 under changing CO2 forcing. Part I: Adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings. J. Clim. 2012, 25, 5260–5272. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, J.; Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 2020, 753, 142046. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, C.L.; Cavalieri, D.J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Ocean. 2008, 113, 1979–2006. [Google Scholar] [CrossRef]
- Smedsrud, L.H.; Esau, I.; Ingvaldsen, R.B.; Eldevik, T.; Haugan, P.M.; Li, C.; Lien, V.S.; Olsen, A.; Omar, A.M.; Otterå, O.H.; et al. The role of the Barents Sea in the Arctic climate system. Rev. Geophys. 2013, 51, 415–449. [Google Scholar] [CrossRef] [Green Version]
- Boisvert, L.N.; Petty, A.A.; Stroeve, J.C. The Impact of the Extreme Winter 2015/16 Arctic Cyclone on the Barents–Kara Seas. Mon. Weather Rev. 2016, 144, 4279–4287. [Google Scholar] [CrossRef]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic Warming Hotspot in the Northern Barents Sea Linked to Declining Sea-Ice Import. Nat. Clim. Change 2018, 8, 634–639. [Google Scholar] [CrossRef]
- National Snow and Ice Data Center. All About Sea Ice. Available online: https://nsidc.org/cryosphere/seaice/data/terminology.html (accessed on 27 April 2022).
- Perovich, D.K.; Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 2012, 39, 5097–5112. [Google Scholar] [CrossRef]
- Lee, S.M.; Sohn, B.J.; Kim, S.J. Differentiating between first-year and multiyear sea ice in the arctic using microwave-retrieved ice emissivities. J. Geophys. Res. Atmos. 2017, 122, 5097–5112. [Google Scholar] [CrossRef]
- Adodo, F.I.; Remy, F.; Picard, G. Seasonal variations of the backscattering coeeficient measured by radar altimeters over the Antarctic Ice Sheet. Crypsphere 2018, 12, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Bergstedt, H.; Zwieback, S.; Bartsch, A.; Leibman, M. Dependence of C-band backscatter on ground temperature, air temperature and snow depth in arctic permafrost regions. Remote Sens. 2018, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- ECMWF IFS. DOCUMENTATION—Cy43r1 Operational Implementation Part IV: Physical Processes; ECMWF: Reading, UK, 2016. [Google Scholar]
- Bintanja, R.; Krikken, F. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing. Sci. Rep. 2016, 6, 38287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wielicki, B.A. Changes in Earth’s Albedo Measured by Satellite. Science 2005, 308, 825. [Google Scholar] [CrossRef] [PubMed]
- Winton, M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett. 2006, 33, L03701. [Google Scholar] [CrossRef] [Green Version]
- Winton, M. Sea ice-albedo feedback and nonlinear Arctic climate change. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications; DeWeaver, E., Bitz, C., Tremblay, L.B., Eds.; AGU: Washington, DC, USA, 2008; Volume 180, pp. 111–131. [Google Scholar] [CrossRef] [Green Version]
Variables | Datasets | Horizontal Resolution | Temporal Resolution | Time Span | Reference |
---|---|---|---|---|---|
Surface Albedo | CLARA-A2 | 25 km | Monthly | 1982–2015 | [53] |
Skin Temperature | ERA5 | 0.25° | Monthly | 1982–2015 | [55] |
Sea Ice Concentration | NECI | 0.25° | Daily | 1982–2015 | [58] |
Radiative Kernels | CAM5 | 1.25° | Monthly | - | [44] |
HadGEM2 | 1.88° | [45] | |||
HadGEM3 | 1.88° | [46] | |||
GFDL | 2.5° | [47] | |||
ECHAM6 | 1.88° | [48] |
Arctic Ocean (All) | Baffin | Barents | Kara | Laptev | Beaufort | Chukchi | |
---|---|---|---|---|---|---|---|
Net | 0.34 ± 0.24 | 0.41 ± 0.17 | 0.58 ± 0.36 | 0.62 ± 0.25 | 0.50 ± 0.10 | 0.42 ± 0.12 | 0.49 ± 0.14 |
Albedo | 0.12 ± 0.12 | 0.15 ± 0.10 | 0.24 ± 0.17 | 0.24 ± 0.14 | 0.18 ± 0.08 | 0.19 ± 0.09 | 0.21 ± 0.07 |
Temperature | 0.22 ± 0.14 | 0.27 ± 0.12 | 0.35 ± 0.21 | 0.38 ± 0.11 | 0.31 ± 0.04 | 0.24 ± 0.05 | 0.28 ± 0.07 |
Period | Arctic Ocean (All) | Baffin | Barents | Kara | Laptev | Beaufort | Chukchi | |
---|---|---|---|---|---|---|---|---|
DJF * | Net | 0.34 ± 0.28 | 0.62 ± 0.28 | 0.78 ± 0.42 | 0.60 ± 0.29 | 0.28 ± 0.06 | 0.24 ± 0.07 | 0.27 ± 0.06 |
Albedo | - | - | - | - | - | - | - | |
Temperature | 0.34 ± 0.28 | 0.62 ± 0.28 | 0.78 ± 0.42 | 0.60 ± 0.29 | 0.28 ± 0.06 | 0.24 ± 0.07 | 0.27 ± 0.06 | |
MAM * | Net | 0.41 ± 0.39 | 0.61 ± 0.37 | 0.96 ± 0.66 | 0.78 ± 0.36 | 0.61 ± 0.15 | 0.33 ± 0.13 | 0.48 ± 0.12 |
Albedo | 0.16 ± 0.26 | 0.32 ± 0.29 | 0.59 ± 0.41 | 0.34 ± 0.26 | 0.20 ± 0.17 | 0.11 ± 0.12 | 0.17 ± 0.13 | |
Temperature | 0.25 ± 0.19 | 0.30 ± 0.14 | 0.38 ± 0.27 | 0.45 ± 0.06 | 0.41 ± 0.04 | 0.23 ± 0.06 | 0.30 ± 0.06 | |
JJA * | Net | 0.35 ± 0.28 | 0.41 ± 0.27 | 0.48 ± 0.36 | 0.63 ± 0.34 | 0.51 ± 0.23 | 0.51 ± 0.22 | 0.56 ± 0.20 |
Albedo | 0.35 ± 0.31 | 0.41 ± 0.28 | 0.49 ± 0.39 | 0.63 ± 0.40 | 0.51 ± 0.26 | 0.55 ± 0.24 | 0.60 ± 0.23 | |
Temperature | 0.00 ± 0.05 | 0.00 ± 0.02 | 0.00 ± 0.04 | −0.01 ± 0.07 | 0.00 ± 0.04 | −0.04 ± 0.03 | −0.04 ± 0.03 | |
SON * | Net | 0.41 ± 0.22 | 0.32 ± 0.11 | 0.38 ± 0.24 | 0.51 ± 0.21 | 0.56 ± 0.1 | 0.51 ± 0.16 | 0.73 ± 0.22 |
Albedo | - | - | - | - | - | - | - | |
Temperature | 0.41 ± 0.22 | 0.32 ± 0.11 | 0.38 ± 0.24 | 0.51 ± 0.21 | 0.56 ± 0.1 | 0.51 ± 0.16 | 0.73 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, N.-H.; Kim, H.-C.; Choi, S.; Jin, D.; Jung, D.; Sim, S.; Woo, J.; Kim, N.; Seo, M.; Lee, K.-S.; et al. Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015. Remote Sens. 2022, 14, 2512. https://doi.org/10.3390/rs14112512
Seong N-H, Kim H-C, Choi S, Jin D, Jung D, Sim S, Woo J, Kim N, Seo M, Lee K-S, et al. Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015. Remote Sensing. 2022; 14(11):2512. https://doi.org/10.3390/rs14112512
Chicago/Turabian StyleSeong, Noh-Hun, Hyun-Cheol Kim, Sungwon Choi, Donghyun Jin, Daeseong Jung, Suyoung Sim, Jongho Woo, Nayeon Kim, Minji Seo, Kyeong-Sang Lee, and et al. 2022. "Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015" Remote Sensing 14, no. 11: 2512. https://doi.org/10.3390/rs14112512
APA StyleSeong, N. -H., Kim, H. -C., Choi, S., Jin, D., Jung, D., Sim, S., Woo, J., Kim, N., Seo, M., Lee, K. -S., & Han, K. -S. (2022). Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015. Remote Sensing, 14(11), 2512. https://doi.org/10.3390/rs14112512