Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Soil Sampling and Soil Analysis
2.2.2. Environmental Covariates
2.3. Methods
2.3.1. Data Treatment
2.3.2. Random Forest
2.3.3. Convolutional Neural Network
2.4. Statistical Assessment
3. Results
3.1. Exploratory Data Analysis
3.2. Evaluation of the Models
3.3. Importance of Predictors
3.4. Mapping Using the Best Model
4. Discussion
4.1. Estimation Capabilities of SMOTE and Different Models
4.2. Effects of Soil-Forming Factors on Soil Salinization and Alkalinization
4.3. The Spatial and Temporal Variation Characteristics of Soil Salinization and Soil Alkalinization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, S.; Atri, N. Impact of salinity stress in crop plants and mitigation strategies. In New Frontiers in Stress Management for Durable Agriculture; Springer: Singapore, 2020; pp. 49–63. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Qadir, M.; Noble, A.D.; Schubert, S.; Thomas, R.J.; Arslan, A. Sodicity-induced land degradation and its sustainable management: Problems and prospects. Land Degrad. Dev. 2006, 17, 661–676. [Google Scholar] [CrossRef]
- Ayars, J.E.; Hoffman, G.J.; Corwin, D.L. Leaching and root zone salinity control. Agric. Salin. Assess. Manag. 2012, 12, 371–403. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar]
- McBratney, A.B.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Sahour, H.; Gholami, V.; Vazifedan, M. A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. J. Hydrol. 2020, 591, 125321. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J.; Latif, A.; Johnson, V.C. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Wu, W.; Al-Shafie, W.M.; Mhaimeed, A.S.; Ziadat, F.; Nangia, V.; Payne, W.B. Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE J. Stars 2014, 7, 4442–4452. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Wang, N.; Xue, J.; Peng, J.; Biswas, A.; He, Y.; Shi, Z. Integrating Remote Sensing and Landscape Characteristics to Estimate Soil Salinity Using Machine Learning Methods: A Case Study from Southern Xinjiang, China. Remote Sens. 2020, 12, 4118. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 305. [Google Scholar] [CrossRef]
- Davis, E.; Wang, C.; Dow, K. Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data. Remote Sens. 2020, 12, 1389. [Google Scholar] [CrossRef]
- Hegazi, E.H.; Yang, L.; Huang, J. A Convolutional Neural Network Algorithm for Soil Moisture Prediction from Sentinel-1 SAR Images. Remote Sens. 2021, 13, 4964. [Google Scholar] [CrossRef]
- Yin, Q.; Li, J.; Ma, F.; Xiang, D.; Zhang, F. Dual-Channel Convolutional Neural Network for Bare Surface Soil Moisture Inversion Based on Polarimetric Scattering Models. Remote Sens. 2021, 13, 4503. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Batjes, N.H.; Dijkshoorn, K.; van Engelen, V.; Fischer, G.; Jones, A.; Montanarela, L. The harmonized world soil database. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, BNE, Australia, 1–6 August 2010; pp. 34–37. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 9. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Branco, P.; Ribeiro, R.P.; Torgo, L. UBL: An R package for utility-based learning. arXiv 2016, arXiv:1604.08079. [Google Scholar]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zucca, C.; Muhaimeed, A.S.; Al Shafie, W.M.; Fadhil Al Quraishi, A.M.; Nangia, V.; Zhu, M.; Liu, G. Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degrad. Dev. 2018, 29, 4005–4014. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Zheng, L.; Guo, J.; Liu, E. Preliminary investigation of the spatial variability of soil infiltration indexes. In Proceedings of the 2011 International Conference on New Technology of Agricultural, Zibo, China, 27–29 May 2011; pp. 558–562. [Google Scholar]
- Taghizadeh Mehrjardi, R.; Schmidt, K.; Eftekhari, K.; Behrens, T.; Jamshidi, M.; Davatgar, N.; Toomanian, N.; Scholten, T. Synthetic resampling strategies and machine learning for digital soil mapping in Iran. Eur. J. Soil Sci. 2020, 71, 352–368. [Google Scholar] [CrossRef]
- Sharififar, A.; Sarmadian, F.; Malone, B.P.; Minasny, B. Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma 2019, 350, 84–92. [Google Scholar] [CrossRef]
- Lauron, M.L.C.; Pabico, J.P. Improved sampling techniques for learning an imbalanced data set. arXiv 2016, arXiv:1601.04756. [Google Scholar]
- Garajeh, M.K.; Malakyar, F.; Weng, Q.; Feizizadeh, B.; Blaschke, T.; Lakes, T. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 2021, 778, 146253. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning for digital soil mapping. Soil 2019, 5, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Wadoux, A.M. Using deep learning for multivariate mapping of soil with quantified uncertainty. Geoderma 2019, 351, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Qi, J.; Gao, Y.; Ouyang, Z.; Zeng, S.; Zhao, B. Detecting soil salinity with MODIS time series VI data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; De Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Zhang, Y.; Hao, Q.; Wu, Y. Remote sensing of soil alkalinity and salinity in the Wuyu’er-Shuangyang River Basin, Northeast China. Remote Sens. 2016, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma 2014, 235, 316–322. [Google Scholar] [CrossRef]
- Ji, W.; Adamchuk, V.I.; Biswas, A.; Dhawale, N.M.; Sudarsan, B.; Zhang, Y.; Rossel, R.A.V.; Shi, Z. Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields. Biosyst. Eng. 2016, 152, 14–27. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed vis–NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
- Huang, C.; Xu, J. Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review. Soil Sci. China Agric. Press 2010, 53, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Läuchli, A.; Epstein, E. Plant responses to saline and sodic conditions. Agric. Salin. Assess. Manag. 1990, 71, 113–137. [Google Scholar]
- Zhang, X.; Huang, B.; Liang, Z.; Zhao, Y.; Sun, W.; Hu, W. Study on salinization characteristics of surface soil in western Songnen Plain. Soils 2013, 45, 1332–1338. [Google Scholar]
- Zhang, X.; Li, L. Characteristics and current situation of salinized soil in Da’an city, Jilin province. Chin. J. Soil Sci. 2001, 32, 26–30. [Google Scholar]
- Liu, D.; Song, K.; Wang, D.; Zhang, S. Dynamic change of land-use patterns in west part of Song Plain. Sci. Geol. Sin. 2006, 26, 277–283. [Google Scholar]
- Li, Q.; Qiu, S.; Deng, W. Study on the secondary saline-alkalization of land in Song Plain. Sci. Geol. Sin. 1998, 18, 268–272. [Google Scholar]
- Zhang, Z.; Ma, H.; Liu, Q.; Zhu, W.; Zhang, T. Development and drives of land salinization in Songnen Plain. Geol. Resour. 2007, 16, 120–124. [Google Scholar]
- Liu, Z.; Yan, M.; He, Y. Research on land saline-alkalized in the west of Jinlin province. Resour. Sci. 2004, 26, 111–116. [Google Scholar]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ali, A.; Xu, Y.; Jiang, L.; Lv, G. Soil moisture and salinity as main drivers of soil respiration across natural xeromorphic vegetation and agricultural lands in an arid desert region. CATENA 2019, 177, 126–133. [Google Scholar] [CrossRef]
- Mahowald, N.M.; Randerson, J.T.; Lindsay, K.; Munoz, E.; Doney, S.C.; Lawrence, P.; Schlunegger, S.; Ward, D.S.; Lawrence, D.; Hoffman, F.M. Interactions between land use change and carbon cycle feedbacks. Glob. Biogeochem. Cycles 2017, 31, 96–113. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar]
- Pulido-Bosch, A.; Rigol-Sanchez, J.P.; Vallejos, A.; Andreu, J.M.; Ceron, J.C.; Molina-Sanchez, L.; Sola, F. Impacts of agricultural irrigation on groundwater salinity. Environ. Earth Sci. 2018, 77, 197. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Wang, H. Large scale development to saline-alkali soil and risk control for the Songnen Plain. Resour. Sci. 2016, 38, 407–413. [Google Scholar]
- Li, B.; Wang, Z.; Liang, Z.; Chi, C. Relationship between salinization and alkalization of sodic soil in Da’an city. Chin. J. Soil Sci. 2007, 25, 443–446. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Perri, S.; Suweis, S.; Entekhabi, D.; Molini, A. Vegetation controls on dryland salinity. Geophys. Res. Lett. 2018, 45, 11669–11682. [Google Scholar] [CrossRef]
Theme | Environmental Factors | Original Resolution | Source |
---|---|---|---|
Geographical coordinates | X | 30 m | |
Y | 30 m | ||
Terrain | DEM, m | 30 m | http://www.resdc.cn/, accessed on 5 December 2021 |
Curvature | 30 m | Calculated from DEM | |
Vdepth | 30 m | Calculated from DEM | |
Openn | 30 m | Calculated from DEM | |
TWI | 30 m | Calculated from DEM | |
MrVBF | 30 m | Calculated from DEM | |
Vegetation | NDVI | 10 m | Sentinel-2A |
CRSI | 10 m | Sentinel-2A | |
SI2 | 10 m | Sentinel-2A | |
Soil | Land use (2021) | 30 m | http://www.resdc.cn/, accessed on 5 December 2021 |
Soil type | 1:1,000,000 | http://www.resdc.cn/, accessed on 5 December 2021 | |
Clay, % | 250 m | http://www.resdc.cn/, accessed on 5 December 2021 | |
Climate | AMT, °C | 1000 m | http://www.geodata.cn/, accessed on 5 December 2021 |
AMP, mm | 1000 m | http://www.geodata.cn/, accessed on 5 December 2021 |
Class Number | Class Name | Index | |
---|---|---|---|
Degree of salinization | TWSS (%) | ||
V | Very low | <0.1 | |
IV | Low | 0.1−0.3 | |
III | Moderate | 0.3−0.5 | |
II | High | 0.5−0.7 | |
I | Very high | >0.7 | |
Degree of alkalinization | ESP (%) | ||
V | Very low | <5 | |
IV | Low | 5−15 | |
III | Moderate | 15−30 | |
II | High | 30−47 | |
I | Very high | >47 |
Degree of Salinization | Observations | Degree of Alkalinization | Observations |
---|---|---|---|
I | 41 | I | 5 |
II | 6 | II | 6 |
III | 11 | III | 3 |
IV | 11 | IV | 17 |
V | 19 | V | 57 |
Soil Salinization | Soil Alkalinization | |||
---|---|---|---|---|
Degree | Original | Balanced | Original | Balanced |
I | 29 | 16 | 3 | 12 |
II | 5 | 15 | 4 | 12 |
III | 8 | 8 | 1 | 11 |
IV | 8 | 8 | 11 | 11 |
V | 14 | 9 | 39 | 12 |
Variable | Number | Mean | SD | Min | Max | Skew | Kurtosis | CV |
---|---|---|---|---|---|---|---|---|
pH | 88 | 8.57 | 0.76 | 7.29 | 10.22 | 0.34 | −0.90 | 0.09 |
TWSS (g kg−1) | 88 | 13.27 | 18.97 | 0.37 | 118.8 | 2.92 | 11.37 | 1.43 |
CO32− (g kg−1) | 56 | 1.39 | 1.85 | 0.01 | 11.26 | 2.91 | 11.95 | 1.33 |
HCO3− (g kg−1) | 81 | 1.11 | 0.87 | 0.12 | 3.92 | 1.37 | 1.14 | 0.78 |
Cl− (g kg−1) | 86 | 0.58 | 1.15 | 0 | 6.96 | 3.51 | 13.40 | 1.98 |
SO42− (g kg−1) | 88 | 0.57 | 1.56 | 0 | 11.46 | 5.22 | 30.12 | 2.74 |
Na+ (g kg−1) | 88 | 0.92 | 1.49 | 0 | 12.11 | 5.02 | 34 | 1.62 |
K+ (g kg−1) | 88 | 0.14 | 0.20 | 0 | 0.92 | 1.71 | 2.42 | 1.43 |
Mg2+ (g kg−1) | 87 | 0.07 | 0.11 | 0 | 0.69 | 3.33 | 12.89 | 1.57 |
Ca2+ (g kg−1) | 88 | 0.22 | 0.52 | 0.02 | 4.87 | 8.02 | 67.79 | 2.36 |
Index | Random Forest | Random Forest–MOTE | Convolutional Neural Network–SMOTE | |||
---|---|---|---|---|---|---|
Salinization | Alkalization | Salinization | Alkalization | Salinization | Alkalization | |
Accuracycv | 0.58 | 0.67 | 0.73 | 0.62 | 0.64 | 0.53 |
Precisioncv | 0.33 | 0.20 | 0.68 | 0.62 | 0.59 | 0.53 |
Recallcv | 0.26 | NA | 0.69 | 0.54 | 0.69 | 0.54 |
F-scorecv | NA | NA | 0.68 | 0.58 | 0.60 | 0.52 |
Kappacv | 0.37 | 0.15 | 0.65 | 0.52 | 0.53 | 0.42 |
Accuracyp | 0.58 | 0.53 | 0.67 | 0.53 | 0.58 | 0.43 |
Precisionp | 0.35 | 0.22 | 0.67 | 0.51 | 0.56 | 0.43 |
Recallp | NA | NA | 0.66 | 0.40 | 0.48 | 0.47 |
F-scorep | NA | NA | 0.61 | 0.45 | 0.48 | 0.45 |
Kappap | 0.31 | 0.07 | 0.52 | 0.34 | 0.40 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Kayem, K.; Hao, Y.; Shi, Z.; Zhang, C.; Peng, J.; Liu, W.; Zuo, Q.; Ji, W.; Li, B. Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors. Remote Sens. 2022, 14, 3020. https://doi.org/10.3390/rs14133020
Yan Y, Kayem K, Hao Y, Shi Z, Zhang C, Peng J, Liu W, Zuo Q, Ji W, Li B. Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors. Remote Sensing. 2022; 14(13):3020. https://doi.org/10.3390/rs14133020
Chicago/Turabian StyleYan, Yang, Kader Kayem, Ye Hao, Zhou Shi, Chao Zhang, Jie Peng, Weiyang Liu, Qiang Zuo, Wenjun Ji, and Baoguo Li. 2022. "Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors" Remote Sensing 14, no. 13: 3020. https://doi.org/10.3390/rs14133020
APA StyleYan, Y., Kayem, K., Hao, Y., Shi, Z., Zhang, C., Peng, J., Liu, W., Zuo, Q., Ji, W., & Li, B. (2022). Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors. Remote Sensing, 14(13), 3020. https://doi.org/10.3390/rs14133020