Damage Properties of the Block-Stone Embankment in the Qinghai–Tibet Highway Using Ground-Penetrating Radar Imagery
Abstract
:1. Introduction
2. Study Area
2.1. Physical Geography of the Study Region
2.2. Block-Stone Embankment
2.2.1. The Structure and Materials of the Block-Stone Embankment
2.2.2. Working Principle of the Block-Stone Embankment
2.3. Factors Leading to Block-Stone Embankment Damage
2.3.1. Natural Factors
2.3.2. Human Factors
3. Data and Methods
3.1. Working Principle of GPR
3.2. Data Acquisition
3.3. Data Processing and Presentation
3.4. GPR Data Interpretation
3.4.1. Field Survey Data
3.4.2. Effective Permittivity and Wave Velocity
3.4.3. Reflection Coefficient
3.4.4. Attenuation
3.4.5. GPR Data Analogy
4. Results
4.1. Interpreted Results of GPR Profiles
4.1.1. Loosening of the Upper Sand-Gravel Layer
4.1.2. Loosening of the Block-Stone Layer
4.1.3. Settlement of the Block-Stone Layer
4.1.4. Dense Filling of Block-Stone Layer
4.2. Distribution of Damages to the Block-Stone Embankment
5. Discussion
6. Conclusions
- (1)
- GPR efficiently and quickly detected and identified the damages in the study area of the block-stone embankment. Four categories of damage were determined: (i) loosening of the upper sand-gravel layer; (ii) loosening of the block-stone layer; (iii) settlement of the block-stone layer; and (iv) dense filling of the block-stone layer. Of these, (i) and (ii) were widely distributed, but (iii) and (iv) less so;
- (2)
- Due to the complex structure of the block-stone embankment, in particular the block-stone layer itself, the attenuation of the electromagnetic wave signals was more noticeable than in the other embankment materials. Therefore, it was difficult to detect and study the deeper parts of the embankment. The quality of GPR data processing also played a very important role in image interpretation;
- (3)
- Loosening of the sand-gravel layer was found to be the most widely distributed, and the least was the dense filling of the block-stone layer. However, the primary reason for the dense filling of the block-stone layer was the falling of the overlying sand-gravel soil. The studied section of the embankment was in the primary stage of deterioration. With further development of the damage, more of the block-stone layers will be filled with sand gravel soil;
- (4)
- The formation of block-stone embankment damages is a complex process resulting from various factors that have close relationships with each other. The block-stone layer was put in the highway embankment to protect the underlying permafrost from the thaw. Once the damage occurs in the block stone embankment, it will weaken its cooling effect leading to worse damages.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, S.; Zhang, J.; Liu, Y.; Wu, J. Thermal regime in the embankment of Qinghai–Tibetan Highway in permafrost regions. Cold Reg. Sci. Technol. 2002, 35, 35–44. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.L.; O’Neill, H.B.; Isaksen, K.; Noetzli, J.; Romanovsky, V.E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 2022, 3, 10–23. [Google Scholar] [CrossRef]
- Zhongqiong, Z.; Qingbai, W.; Guanli, J.; Siru, G.; Ji, C.; Yongzhi, L. Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2019, 169, 102904. [Google Scholar] [CrossRef]
- Yu, Q.; Fan, K.; You, Y.; Guo, L.; Yuan, C. Comparative analysis of temperature variation characteristics of permafrost roadbeds with different widths. Cold Reg. Sci. Technol. 2015, 117, 12–18. [Google Scholar] [CrossRef]
- Yu, F.; Qi, J.; Lai, Y.; Sivasithamparam, N.; Yao, X.; Zhang, M.; Liu, Y.; Wu, G. Typical embankment settlement/heave patterns of the Qinghai–Tibet highway in permafrost regions: Formation and evolution. Eng. Geol. 2016, 214, 147–156. [Google Scholar] [CrossRef]
- Peng, H.; Ma, W.; Mu, Y.-H.; Jin, L.; Yuan, K. Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai–Tibet Highway. Nat. Hazards 2014, 75, 2589–2605. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Xun, X. Radiation and energy balance characteristics of asphalt pavement in permafrost regions. Environ. Earth Sci. 2016, 75, 221. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Liu, Y.; Gao, S. Characteristics of water and heat changes in near-surface layers under influence of engineering interface. Appl. Therm. Eng. 2017, 125, 986–994. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Liu, Y.; Zhang, Z.; Wu, G. Thermal accumulation mechanism of asphalt pavement in permafrost regions of the Qinghai–Tibet Plateau. Appl. Therm. Eng. 2018, 129, 345–353. [Google Scholar] [CrossRef]
- Alfaro, M.; Ciro, G.; Thiessen, K.; Ng, T. Case Study of Degrading Permafrost beneath a Road Embankment. J. Cold Reg. Eng. 2009, 23, 93–111. [Google Scholar] [CrossRef]
- Ya-Ling, C.; Sheng, Y.; Ma, W. Study on the effect of the thermal regime differences in roadbed slopes on their thawing features in permafrost regions of Qinghai–Tibetan plateau. Cold Reg. Sci. Technol. 2008, 53, 334–345. [Google Scholar] [CrossRef]
- O’Neill, B.; Burn, C. Impacts of variations in snow cover on permafrost stability, including simulated snow management, Dempster Highway, Peel Plateau, Northwest Territories. Arct. Sci. 2017, 3, 150–178. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, Z.; Liu, Y. Long-term thermal effect of asphalt pavement on permafrost under an embankment. Cold Reg. Sci. Technol. 2010, 60, 221–229. [Google Scholar] [CrossRef]
- Ma, W.; Mu, Y.; Wu, Q.; Sun, Z.; Liu, Y. Characteristics and mechanisms of embankment deformation along the Qinghai–Tibet Railway in permafrost regions. Cold Reg. Sci. Technol. 2011, 67, 178–186. [Google Scholar] [CrossRef]
- Wang, S.; Niu, F.; Chen, J.; Dong, Y. Permafrost research in China related to express highway construction. Permafr. Periglac. 2020, 31, 406–416. [Google Scholar] [CrossRef]
- Fan, K. Study on Design and Construction techniques of Special Subgrade for Permafrost Areas. Master’s Thesis, Chang’an University, Xi’an, China, 2009. [Google Scholar]
- Doré, G.; Niu, F.; Brooks, H. Adaptation Methods for Transportation Infrastructure Built on Degrading Permafrost. Permafr. Periglac. 2016, 27, 352–364. [Google Scholar] [CrossRef]
- Zhi, W.; Yu, S.; Wei, M.; Jilin, Q. Evaluation of EPS application to embankment of Qinghai–Tibetan railway. Cold Reg. Sci. Technol. 2005, 41, 235–247. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, J. A review on the cooling effect of duct-ventilated embankments in China. Cold Reg. Sci. Technol. 2013, 95, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhang, J.; Chen, J. Highway Construction Technology on Permafrost Regions; China Communications Press: Beijing, China, 2008; pp. 25–32. [Google Scholar]
- Cheng, G.; Wu, Q.; Ma, W. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway. Sci. China Ser. E Technol. Sci. 2009, 52, 530–538. [Google Scholar] [CrossRef]
- Fang, J.; Li, D.; Xu, A.; Tong, C. Application Technology of Special Subgrade Engineering Measures in Permafrost Regions; Lanzhou University Press: Lanzhou, China, 2016; pp. 25–32. [Google Scholar]
- Mu, Y.; Ma, W.; Liu, Y.; Sun, Z. Monitoring investigation on thermal stability of air-convection crushed-rock embankment. Cold Reg. Sci. Technol. 2010, 62, 160–172. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, S.; Chen, J.; Jin, L.; Dong, Y. Analysis of the Cooling Effect of Block Stone Embankment at Wudaoliang Section of the Qinghai-Tibet Highway. China J. Highw. Transport. 2014, 27, 17–23. [Google Scholar] [CrossRef]
- Liu, M.; Li, G.; Niu, F.; Lin, Z.; Shang, Y. Porosity of crushed rock layer and its impact on thermal regime of Qinghai−Tibet Railway embankment. J. Cent. South Univ. 2017, 24, 977–987. [Google Scholar] [CrossRef]
- Liu, M.; Niu, F.; Ma, W.; Fang, J.; Lin, Z.; Luo, J. Experimental investigation on the enhanced cooling performance of a new crushed-rock revetment embankment in warm permafrost regions. Appl. Therm. Eng. 2017, 120, 121–129. [Google Scholar] [CrossRef]
- Liu, M.; Niu, F.; Luo, J.; Yin, G.; Zhang, L. Performance, applicability, and optimization of a new slope cooling and protection structure for road embankment over warm permafrost. Int. J. Heat Mass Transf. 2020, 162, 120388. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, Y.; Li, S.; Zhang, S. Laboratory investigation on cooling effect of sloped crushed-rock revetment in permafrost regions. Cold Reg. Sci. Technol. 2006, 46, 27–35. [Google Scholar] [CrossRef]
- Qian, J.; Yu, Q.; Guo, L.; Hu, J. Experimental study on convection characteristics of crushed-rock layer. Can. Geotech. J. 2013, 50, 834–840. [Google Scholar] [CrossRef]
- Lai, Y.; Ma, W.; Zhang, M.; Yu, W.; Gao, Z. Experimental investigation on influence of boundary conditions on cooling effect and mechanism of crushed-rock layers. Cold Reg. Sci. Technol. 2006, 45, 114–121. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, L.; Zhang, C.; Mu, K.; Jin, L. Fuzzy expert prediction method for highway diseases in permafrost region. J. Traffic Transp. Eng. 2016, 16, 112–121. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-Penetrating Radar for High-Resolution Mapping of Soil and Rock STRATIGRAPHY1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Blindow, N. Ground Penetrating Radar. In Groundwater Geophysics: A Tool for Hydrogeology; Kirsch, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 227–252. [Google Scholar]
- Liu, L.; Qian, R. Ground penetrating radar: A critical tool in near-surface geophysics. Chin. J. Geophys. 2015, 58, 2606–2617. [Google Scholar] [CrossRef]
- Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniques. Remote Sens. 2014, 6, 9729–9748. [Google Scholar] [CrossRef] [Green Version]
- Abouhamad, M.; Dawood, T.; Jabri, A.; Alsharqawi, M.; Zayed, T. Corrosiveness Mapping of Bridge Decks Using Image-Based Analysis of GPR Data. Autom. Constr. 2017, 80, 104–117. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, X.; Huang, H. Application of ground penetrating radar in grouting evaluation for shield tunnel construction. Tunn. Undergr. Space Technol. 2010, 25, 99–107. [Google Scholar] [CrossRef]
- Diallo, M.; Cheng, L.; Rosa, E.; Gunther, C.; Chouteau, M. Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Eng. Geol. 2018, 248, 230–241. [Google Scholar] [CrossRef]
- Pilecki, Z.; Krzysztof, K.; Elżbieta, P.; Andrzej, K.; Sylwia, T.-S.; Tomasz, Ł. Identification of buried historical mineshaft using ground-penetrating radar. Eng. Geol. 2021, 294, 106400. [Google Scholar] [CrossRef]
- Iftimie, N.; Savin, A.; Steigmann, R.; Dobrescu, G.S. Underground Pipeline Identification into a Non-Destructive Case Study Based on Ground-Penetrating Radar Imaging. Remote Sens. 2021, 13, 3494. [Google Scholar] [CrossRef]
- Forte, E.; Pipan, M.; Casabianca, D.; Di Cuia, R.; Riva, A. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. J. Appl. Geophys. 2012, 81, 76–87. [Google Scholar] [CrossRef]
- Alani, A.M.; Aboutalebi, M.; Kilic, G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. J. Appl. Geophys. 2013, 97, 45–54. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M.; Tian, G. Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection. J. Appl. Geophys. 2013, 97, 107–117. [Google Scholar] [CrossRef]
- Hughes, L.J. Mapping contaminant-transport structures in karst bedrock with ground-penetrating radar. Geophysics 2009, 74, B197–B208. [Google Scholar] [CrossRef]
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A Review of GPR Application on Transport Infrastructures: Troubleshooting and Best Practices. Remote Sens. 2021, 13, 672. [Google Scholar] [CrossRef]
- Peng, S.; Yang, F.; Xu, X. Application and Prospects of the GPR Technology on Road Damage Detection in China. In Proceedings of the Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7–10 July 2015; pp. 476–479. [Google Scholar]
- Krysiński, L.; Sudyka, J. GPR abilities in investigation of the pavement transversal cracks. J. Appl. Geophys. 2013, 97, 27–36. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, L.; Xie, C.; Zou, D.; Wu, T.; Du, E.; Wang, L.; Sheng, Y.; Zhao, Y.; Xiao, Y.; et al. The Zonation of Mountain Frozen Ground under Aspect Adjustment Revealed by Ground-Penetrating Radar Survey—A Case Study of a Small Catchment in the Upper Reaches of the Yellow River, Northeastern Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 2450. [Google Scholar] [CrossRef]
- Munroe, J.S.; Doolittle, J.A.; Kanevskiy, M.Z.; Hinkel, K.M.; Nelson, F.E.; Jones, B.M.; Shur, Y.; Kimble, J.M. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska. Permafr. Periglac. 2007, 18, 309–321. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.-J.; Lin, Z.-J.; Liu, M.-H.; Yin, G.-A. Variations in the northern permafrost boundary over the last four decades in the Xidatan region, Qinghai–Tibet Plateau. J. Mt. Sci. Eng. 2018, 15, 765–778. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical mapping of palsa peatland permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shen, Y. Calculation and Interpretation of Ground Penetrating Radar for Temperature and Relative Water Content of Seasonal Permafrost in Qinghai-Tibet Platea. Electronics 2019, 8, 731. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Zhao, L.; Wu, T.; Li, R.; Yue, G.; Wu, X.; Li, W.; Jiao, Y.; Hu, G.; Qiao, Y.; et al. The relationship between the ground surface layer permittivity and active-layer thawing depth in a Qinghai–Tibetan Plateau permafrost area. Cold Reg. Sci. Technol. 2016, 126, 55–60. [Google Scholar] [CrossRef]
- Stephani, E.; Fortier, D.; Shur, Y.; Fortier, R.; Doré, G. A geosystems approach to permafrost investigations for engineering applications, an example from a road stabilization experiment, Beaver Creek, Yukon, Canada. Cold Reg. Sci. Technol. 2014, 100, 20–35. [Google Scholar] [CrossRef]
- Shen, Y.; Zuo, R.; Liu, J.; Tian, Y.; Wang, Q. Characterization and evaluation of permafrost thawing using GPR attributes in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2018, 151, 302–313. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, L. Permafrost Subgrade Condition Assessment Using Extrapolation by Deterministic Deconvolution on Multifrequency GPR Data Acquired Along the Qinghai-Tibet Railway. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 83–90. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.; Li, G. Investigation of the freeze–thaw states of foundation soils in permafrost areas along the China–Russia Crude Oil Pipeline (CRCOP) route using ground-penetrating radar (GPR). Cold Reg. Sci. Technol. 2016, 126, 10–21. [Google Scholar] [CrossRef]
- Jørgensen, A.S.; Andreasen, F. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland. Cold Reg. Sci. Technol. 2007, 48, 64–72. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z. A new map of permafrost distribution on the Tibetan Plateau (2017). Cryosphere 2019, 11, 2527–2542. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zhou, D.; Jin, H.; Li, X.; Wu, Q. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, Z.; Liu, G. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet plateau. J. Eng. Geol. 2021, 29, 342–352. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Yuan, K.; Zhao, Y. Qinghai-Tibet Highway Engineering Geology in Permafrost Regions: Review and Prospect. China J. Highw. Transp. 2015, 28, 9. [Google Scholar] [CrossRef]
- Song, Z. Study on the Adaptability of Block-Rock-Embankment in Permafrost Regions. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2012. [Google Scholar]
- Lai, Y.M.; Zhang, M.Y.; Li, S.Y. Theory and Application of Cold Regions Engineering; Science Press: Beijing, China, 2009; pp. 43–92. [Google Scholar]
- Zeng, Z.F.; Liu, S.X.; Wang, Z.J.; Xue, J. Principle and Application of Ground-Penetrating Radar; Science Press: Beijing, China, 2006; 119p. [Google Scholar]
- Benedetto, A.; Tosti, F.; Ciampoli, L.B.; D’Amico, F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process. 2017, 132, 201–209. [Google Scholar] [CrossRef]
- Shu, Z.L.; Liu, B.X.; Liu, X.R.; Zhu, C.H. Forward and Inverse Theory and Signal Processing of Ground-Penetrating Radar; Science Press: Beijing, China, 2017; pp. 1–10. [Google Scholar]
- Reflexw. User Guide of Reflexw Computer Program; Sandmeier Geophysical Research: Karlsruhe, Germany, 2018. [Google Scholar]
- Sihvola, A.H.; Alanen, E. Studies of mixing formulae in the complex plane. IEEE Trans. Geosci. Remote 1991, 29, 679–687. [Google Scholar] [CrossRef]
- Shivola, A.H. Self-consistency aspects of dielectric mixing theories. IEEE Trans. Geosci. Remote 2002, 27, 403–415. [Google Scholar] [CrossRef]
- Wei, K.; Song, X.; Zhou, S.; Zhang, H. Characteristics of ground-penetrating radar response to abnormal defects of road gravel cushion. J. Hohai. Univ. 2015, 43, 133–138. [Google Scholar] [CrossRef]
- Chai, M.; Li, G.; Ma, W.; Chen, D.; Du, Q.; Zhou, Y.; Qi, S.; Tang, L.; Jia, H. Damage characteristics of the Qinghai-Tibet Highway in permafrost regions based on UAV imagery. Int. J. Pavement Eng. 2022, 247074867. [Google Scholar] [CrossRef]
Parameters and Device | Setting A | Setting B |
---|---|---|
Antenna frequency (MHz) | 300 | 70 |
Antenna offset (m) | 0.23 | 0.6 |
Time window (ns) | 93 | 375 |
Sampling rate (m) | 0.05 | 0.05 |
Samples | 300 | 300 |
Trigger device | Wheel | Wheel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, S.; Li, G.; Chen, D.; Chai, M.; Zhou, Y.; Du, Q.; Cao, Y.; Tang, L.; Jia, H. Damage Properties of the Block-Stone Embankment in the Qinghai–Tibet Highway Using Ground-Penetrating Radar Imagery. Remote Sens. 2022, 14, 2950. https://doi.org/10.3390/rs14122950
Qi S, Li G, Chen D, Chai M, Zhou Y, Du Q, Cao Y, Tang L, Jia H. Damage Properties of the Block-Stone Embankment in the Qinghai–Tibet Highway Using Ground-Penetrating Radar Imagery. Remote Sensing. 2022; 14(12):2950. https://doi.org/10.3390/rs14122950
Chicago/Turabian StyleQi, Shunshun, Guoyu Li, Dun Chen, Mingtang Chai, Yu Zhou, Qingsong Du, Yapeng Cao, Liyun Tang, and Hailiang Jia. 2022. "Damage Properties of the Block-Stone Embankment in the Qinghai–Tibet Highway Using Ground-Penetrating Radar Imagery" Remote Sensing 14, no. 12: 2950. https://doi.org/10.3390/rs14122950
APA StyleQi, S., Li, G., Chen, D., Chai, M., Zhou, Y., Du, Q., Cao, Y., Tang, L., & Jia, H. (2022). Damage Properties of the Block-Stone Embankment in the Qinghai–Tibet Highway Using Ground-Penetrating Radar Imagery. Remote Sensing, 14(12), 2950. https://doi.org/10.3390/rs14122950