A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method
Abstract
:1. Introduction
2. Methods
2.1. Current PACO Shadow Masking
2.2. TIP Method
- Threshold selection—(T).
- Difference index SWIR-NIR (DISN)—(I).
- Normalized difference water index. (NDWI-green) for water correction—(I)
- Elimination of small isolated pixels or patches and smoothing of borders.
- Elimination of shadows not corresponding to the present cloud projection. (P)
2.2.1. TIP Input Image and Preparation for Masking
2.2.2. TIP Masking: Threshold Selection
- If the sum of the mean values in the green and red channel is less or equal to 45, then all the pixels that lie between 0 and 100, and 100 and (for the B, G and R channels, respectively) are selected as shadow pixels, and others as non-shadow pixels.
- Else, all pixels that lie between 0 and , and 255, and 255 and (for the B, G and R channels, respectively) are selected as shadow pixels and others as non-shadow pixels.
2.2.3. TIP Masking: DISN for Dark Vegetation Correction
2.2.4. TIP Masking: NDWI-Green for Water Correction
2.2.5. TIP Masking: Small Isolated Pixels or Patches and Smoothing of Borders
2.2.6. TIP Masking: Cloud Projection
3. Results
3.1. Data and Material for Training Set
3.2. Masking Sequence of TIP Method
4. Validation of Results
4.1. Validation Statistic
User, Producer and Overall Accuracy
4.2. Sentinel-2 Validation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dunbar, B. NASA’s Icesat Satellite Sees Changing World Affecting Many. Available online: https://www.nasa.gov/centers/goddard/earthandsun/icesat_light.html (accessed on 18 May 2022).
- Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 2020, 237, 111446. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Pande, C.B.; Kadam, S.A.; Jayaraman, R.; Gorantiwar, S.; Shinde, M. Prediction of soil chemical properties using multispectral satellite images and wavelet transforms methods. J. Saudi Soc. Agric. Sci. 2022, 21, 21–28. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Ruiying, Z.; Jiang, Q.; Tingting, F.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef] [Green Version]
- Wiefels, P.A.; Baroja, C. Red Edge Detects Vegetative Stress Earlier in Plant Growth Cycle. 2022. Available online: https://up42.com/blog/tech/red-edge-detects-vegetative-stress-earlier-in-plant-growth-cycle#:~:text=The%20Red%20Edge%20Difference&text=%22Vegetative%20stress%20will%20show%20itself,nm%20sliver%20of%20the%20spectrum (accessed on 18 May 2022).
- Dalponte, M.; Marzini, S.; Solano Correa, Y.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping forest windthrows using high spatial resolution multispectral satellite images. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102206. [Google Scholar] [CrossRef]
- van der Meer, F.; van der Werff, H.; van Ruitenbeek, F. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Xu, L.; Qi, F.; Jiang, R. Shadow Removal from a Single Image. In Proceedings of the 6th International Conference on Intelligent Systems Design and Applications, Ji’an, China, 16–18 October 2006; Volume 2, pp. 1049–1054. [Google Scholar] [CrossRef]
- Zhu, J.; Samuel, K.G.G.; Masood, S.Z.; Tappen, M.F. Learning to recognize shadows in monochromatic natural images. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 223–230. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.A.; Holz, R.E.; Frey, R.A.; Eloranta, E.W.; Maddux, B.; McGill, M.J. Cloud Detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [Google Scholar] [CrossRef] [Green Version]
- Braaten, J.D.; Cohen, W.B.; Yang, Z. Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems. Remote Sens. Environ. 2015, 169, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction. Remote Sens. 2014, 6, 776–800. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Mateo-García, G.; Gómez-Chova, L.; Camps-Valls, G. Convolutional neural networks for multispectral image cloud masking. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2255–2258. [Google Scholar] [CrossRef]
- Yan, Z.; Yan, M.; Sun, H.; Fu, K.; Hong, J.; Sun, J.; Zhang, Y.; Sun, X. Cloud and cloud shadow detection using multilevel feature fused segmentation network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1600–1604. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, L. A new cloud shadow detection algorithm based on prior land type database support. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 849–851. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2018, 144, 235–253. [Google Scholar] [CrossRef]
- Frantz, D. FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Richter, R.; Schläpfer, D. Atmospheric and Topographic Correction (ATCOR Theoretical Background Document); DLR: Cologne, Germany, 2019. [Google Scholar]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical considerations and nomenclature for reflectance. NBS Monogr. 1992, 160, 4. [Google Scholar]
- Zekoll, V.; Main-Knorn, M.; Alonso, K.; Louis, J.; Frantz, D.; Richter, R.; Pflug, B. Comparison of Masking Algorithms for Sentinel-2 Imagery. Remote Sens. 2021, 13, 137. [Google Scholar] [CrossRef]
- Murali, S.; Govindan, V.K. Shadow Detection and Removal from a Single Image Using LAB Color Space. Cybern. Inf. Technol. 2013, 13, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Vegetation Indices as a Satellite-Based Add-On for Agri Solutions. 2022. Available online: https://eos.com/blog/vegetation-indices/ (accessed on 18 May 2022).
- Ma, S.; Zhou, Y.; Gowda, P.H.; Dong, J.; Zhang, G.; Kakani, V.G.; Wagle, P.; Chen, L.; Flynn, K.C.; Jiang, W. Application of the water-related spectral reflectance indices: A review. Ecol. Indic. 2019, 98, 68–79. [Google Scholar] [CrossRef]
- NDWI: Normalized Difference Water Index in Agriculture. 2021. Available online: https://eos.com/make-an-analysis/ndwi/ (accessed on 18 May 2022).
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. 2001. Available online: https://scipy.org/ (accessed on 18 May 2022).
- Wang, T.; Shi, J.; Husi, L.; Zhao, T.; Ji, D.; Xiong, C.; Gao, B. Effect of Solar-Cloud-Satellite Geometry on Land Surface Shortwave Radiation Derived from Remotely Sensed Data. Remote Sens. 2017, 9, 690. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, E.; Jiang, J.; Lema, L.; Barnabé, P.; Giuliani, G.; Lacroix, P.; Pirard, E. Cloud and Cloud-Shadow Detection for Applications in Mapping Small-Scale Mining in Colombia Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 736. [Google Scholar] [CrossRef]
- Foody, G.M. Sample size determination for image classification accuracy assessment and comparison. Int. J. Remote Sens. 2009, 30, 5273–5291. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Wagner, J.E.; Stehman, S.V. Optimizing sample size allocation to strata for estimating area and map accuracy. Remote Sens. Environ. 2015, 168, 126–133. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
- Acito, N.; Diani, M.; Procissi, G.; Corsini, G. Atmospheric Compensation of PRISMA Data by Means of a Learning Based Approach. Remote Sens. 2021, 13, 2967. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.; Wulder, M.; Markham, B.; McCorkel, J.; Crawford, C.; Storey, J.; Jenstrom, D. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; de los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.; Ickes, J.; et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 4471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
Scene | Location | Date | Tile | SZA | Desert | Ice/Snow | Nonveg | Veg | Water | Mountains | Rural | Urban |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Africa, Gobabeb | 2019/03/06 | T33KWP | 32.5 | X | X | X | |||||
2 | Antarctic | 2018/01/26 | T34DFH | 58.8 | X | X | X | |||||
3 | France, Arcachon | 2017/11/15 | T30TXQ | 63.9 | X | X | X | X | X | |||
4 | France | 2016/01/16 | T31TFJ | 66.8 | X | X | X | X | X | X | ||
5 | Morocco, Quarzazate | 2018/08/30 | T29RPQ | 27.2 | X | X | X | X | ||||
6 | Netherlands, Amsterdam | 2018/09/13 | T31UFU | 49.7 | X | X | X | X |
Class | UA (A) | UA (P) | PA (A) | PA (P) |
---|---|---|---|---|
clear | 74.6 | 75.7 | 67.1 | 80.4 |
semi-transp. cloud | 61.1 | 53.8 | 35.8 | 38.8 |
cloud | 62.2 | 80.5 | 67.4 | 47.6 |
cloud shadow | 69.0 | 57.3 | 64.9 | 75.3 |
water | 48.2 | 91.5 | 82.3 | 81.3 |
snow/ice | 60.5 | 51.4 | 67.2 | 66.9 |
topographic shadows | 32.0 | 20.6 | 1.2 | 2.4 |
OA Difference Area | |||
---|---|---|---|
Scene | Location | A | P |
ID | Average (all scenes) | 70.4 | 76.6 |
1 | Antarctic | 0 | 0 |
6 | Estonia, Tallin | 85.0 | 84.5 |
8 | Italy, Etna | 63.5 | 83.5 |
9 | Kazakhstan, Balkhash | 57.5 | 78.5 |
10 | Mexico, Cancun | 64.5 | 42.5 |
11 | Morocco, Quarzazate | 91.5 | 94.5 |
12 | Mosambique, Maputo | 7.5 | 46.5 |
13 | Netherlands, Amsterdam | 65.0 | 76.0 |
14 | Phillipines, Manila | 66.0 | 71.0 |
16 | Russia, Yakutsk | 73.0 | 88.0 |
17 | Spain, Barrax-1 | 67.0 | 78.5 |
18 | Spain, Barrax-2 | 76.0 | 87.5 |
19 | Switzerland, Davos | 52.5 | 55.5 |
20 | USA, Rimrock | 48.5 | 67.5 |
2 | Argentina, Buenos Aires | 99.8 | 93.7 |
3 | Australia, Lake Lefroy | 100.0 | 100.0 |
4 | Bolivia, Puerto Siles | 99.8 | 98.4 |
5 | China, Dunhuang | 92.3 | 92.4 |
7 | Germany, Berlin | 99.7 | 94.0 |
15 | Russia, Sachalin | 99.2 | 99.2 |
Scene | Location | UA (A) | UA (P) | PA (A) | PA (P) | Annotated Cloud Shadow Pixels |
---|---|---|---|---|---|---|
1 | Antarctic | 0 | 0 | 0 | 0 | 35 |
6 | Estonia, Tallin | 93.0 | 87.0 | 77.0 | 82.0 | 1415 |
8 | Italy, Etna | 88.0 | 80.0 | 39.0 | 87.0 | 1446 |
9 | Kazakhstan, Balkhash | 76.0 | 93.0 | 39.0 | 64.0 | 809 |
10 | Mexico, Cancun | 91.0 | 60.0 | 38.0 | 25.0 | 755 |
11 | Morocco, Quarzazate | 88.0 | 93.0 | 95.0 | 96.0 | 32,318 |
12 | Mosambique, Maputo | 4.0 | 3.0 | 11.0 | 90.0 | 82 |
13 | Netherlands, Amsterdam | 77.0 | 68.0 | 53.0 | 84.0 | 857 |
14 | Phillipines, Manila | 74.0 | 58.0 | 58.0 | 84.0 | 1076 |
16 | Russia, Yakutsk | 80.0 | 96.0 | 66.0 | 80.0 | 958 |
17 | Spain, Barrax-1 | 87.0 | 93.0 | 47.0 | 64.0 | 1592 |
18 | Spain, Barrax-2 | 73.0 | 86.0 | 79.0 | 89.0 | 25,115 |
19 | Switzerland, Davos | 61.0 | 62.0 | 44.0 | 49.0 | 2561 |
20 | USA, Rimrock | 45.0 | 69.0 | 52.0 | 66.0 | 847 |
2 | Argentina, Buenos Aires | 99.6 | 87.4 | 100.0 | 100.0 | 0 |
3 | Australia, Lake Lefroy | 100.0 | 100.0 | 100.0 | 100.0 | 0 |
4 | Bolivia, Puerto Siles | 99.5 | 96.8 | 100.0 | 100.0 | 0 |
5 | China, Dunhuang | 84.6 | 84.8 | 100.0 | 100.0 | 0 |
7 | Germany, Berlin | 99.3 | 88.1 | 100.0 | 100.0 | 0 |
15 | Russia, Sachalin | 98.3 | 98.5 | 100.0 | 100.0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zekoll, V.; de los Reyes, R.; Richter, R. A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method. Remote Sens. 2022, 14, 2922. https://doi.org/10.3390/rs14122922
Zekoll V, de los Reyes R, Richter R. A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method. Remote Sensing. 2022; 14(12):2922. https://doi.org/10.3390/rs14122922
Chicago/Turabian StyleZekoll, Viktoria, Raquel de los Reyes, and Rudolf Richter. 2022. "A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method" Remote Sensing 14, no. 12: 2922. https://doi.org/10.3390/rs14122922
APA StyleZekoll, V., de los Reyes, R., & Richter, R. (2022). A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method. Remote Sensing, 14(12), 2922. https://doi.org/10.3390/rs14122922