High-Precision Depth Domain Migration Method in Imaging of 3D Seismic Data in Coalfield
Abstract
:1. Introduction
2. Theory
2.1. Numerical Simulation of High-Precision Seismic Wave Field
2.2. Reverse Time Migration
3. Numerical Examples
4. Seismic Data Example of Field Coalfields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Lu, J.; Yu, G. A normal fault in coal seams with drop height less than 3 m can be identified in seismic exploration. J. China Coal Soc. 2010, 35, 629–634. [Google Scholar]
- Lambourne, A.N.; Evans, B.J.; Hatherly, P.J. The application of the 3D seismic surveying technique to coal seam imaging: Case histories from the Arckaringa and Sydney basins. Explor. Geophys. 1989, 20, 137–141. [Google Scholar] [CrossRef]
- Walton, C.; Evans, B.; Urosevic, M. Imaging coal seam structure using 3-D seismic methods. Explor. Geophys. 2000, 31, 509–514. [Google Scholar] [CrossRef]
- Pei, X.D. Signal acquisition method for 3D seismic exploration in high density coal mining area. Arab. J. Geosci. 2020, 13, 712. [Google Scholar] [CrossRef]
- Han, J.G.; Wang, Y.; Lu, J. Multi-component Gaussian beam prestack depth migration. J. Geophys. Eng. 2013, 10, 055008. [Google Scholar] [CrossRef]
- Han, J.G.; Lü, Q.T.; Gu, B.L.; Yan, J.Y.; Zhang, H. 2D anisotropic multicomponent Gaussian-beam migration under complex surface conditions. Geophysics 2020, 85, S89–S102. [Google Scholar] [CrossRef]
- Gu, B.L.; Huang, J.P.; Han, J.G.; Ren, Z.M.; Li, Z.C. Least-squares inversion-based elastic reverse time migration with PP- and PS-angle-domain common-imaging gathers. Geophysics 2021, 86, S29–S44. [Google Scholar] [CrossRef]
- Hu, H.; Xiang, S. Application of pre-stack depth migration technique in salt bed. Petrol. Explor. Dev. 2006, 33, 194–197. [Google Scholar]
- Liu, D.J.; Yin, X.Y. A method of Fourier finite-difference preserved-amplitude prestack depth migration. Chin. J. Geophys. 2007, 50, 268–276. [Google Scholar] [CrossRef]
- Yang, J.D.; Huang, J.P.; Wang, X.; Li, Z.C. An amplitude-preserved adaptive focused beam seismic migration method. Petrol. Sci. 2015, 12, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.L.; Han, J.G.; Ren, Z.M.; Li, Z.C. 2D least-squares elastic reverse time migration of multicomponent seismic data. Geophysics 2019, 84, S523–S538. [Google Scholar] [CrossRef]
- Chang, W.F.; McMechan, G.A. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition. Geophysics 1986, 51, 67–84. [Google Scholar] [CrossRef]
- Symes, W.W. Reverse time migration with optimal checkpointing. Geophysics 2007, 72, SM213–SM221. [Google Scholar] [CrossRef] [Green Version]
- Shragge, J. Reverse time migration from topography. Geophysics 2014, 79, S141–S152. [Google Scholar] [CrossRef]
- Nguyen, B.D.; McMechan, G.A. Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics 2013, 78, S37–S46. [Google Scholar] [CrossRef]
- Nguyen, B.D.; McMechan, G.A. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics 2015, 80, S1–S18. [Google Scholar] [CrossRef]
- Liu, Q.C.; Zhang, J.F.; Zhang, H. Eliminating the redundant source effects from the cross-correlation reverse-time migration using a modified stabilized division. Comput. Geosci. 2016, 92, 49–57. [Google Scholar] [CrossRef]
- Liu, G.F.; Liu, Y.N.; Ren, L.; Meng, X.H. 3D seismic reverse time migration on GPGPU. Comput. Geosci. 2013, 59, 17–23. [Google Scholar] [CrossRef]
- Du, Q.; Gong, X.; Zhang, M.; Zhu, Y.; Fang, G. 3D PS-wave imaging with elastic reverse-time migration. Geophysics 2014, 79, S174–S184. [Google Scholar] [CrossRef]
- Rocha, D.; Sava, P.; Guitton, A. 3D acoustic least-squares reverse time migration using the energy norm. Geophysics 2018, 83, S261–S270. [Google Scholar] [CrossRef]
- Gu, B.L.; Ren, Z.M.; Li, Q.Q.; Han, J.G.; Li, Z.C. An application of vector wavefield decomposition to 3D elastic reverse time migration and field data test. Comput. Geosci. 2019, 131, 112–131. [Google Scholar] [CrossRef]
- Ren, Z.M.; Bao, Q.Z.; Xu, S.G. Memory-efficient source wavefield reconstruction and its application to 3D reverse time migration. Geophysics 2022, 87, S21–S34. [Google Scholar] [CrossRef]
- Chang, W.; McMechan, G.A. Elastic reverse-time migration. Geophysics 1987, 52, 1367–1375. [Google Scholar] [CrossRef]
- Yan, J.; Sava, P. Isotropic angle-domain elastic reverse-time migration. Geophysics 2008, 73, S229–S239. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.Z.; Zhu, Y.T.; Ba, J. Polarity reversal correction for elastic reverse time migration. Geophysics 2012, 77, S31–S41. [Google Scholar] [CrossRef]
- Du, Q.Z.; Guo, C.F.; Zhao, Q.; Gong, X.F.; Wang, C.X.; Li, X.Y. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 2017, 82, S111–S127. [Google Scholar] [CrossRef]
- Yong, P.; Huang, J.P.; Li, Z.C.; Liao, W.Y.; Qu, L.P.; Li, Q.Y.; Yuan, M.L. Elastic wave reverse-time migration based on decoupled elastic-wave equations and inner-product imaging condition. J. Geophys. Eng. 2016, 13, 953–963. [Google Scholar] [CrossRef]
- Ren, Z.M.; Liu, Y.; Sen, M.K. Least-squares reverse time migration in elastic media. Geophys. J. Int. 2017, 208, 1103–1125. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z. Imaging of elastic seismic data by least-squares reverse time migration with weighted L2-norm multiplicative and modified total-variation regularizations. Geophys. Prospect. 2020, 68, 411–430. [Google Scholar] [CrossRef]
- Fowler, P.J.; Du, X.; Fletcher, R.P. Couple equations for reverse time migration in transversely isotropic media. Geophysics 2010, 75, S11–S22. [Google Scholar] [CrossRef]
- Li, C.; Liu, G.F.; Li, Y.H. A practical implementation of 3D TTI reverse time migration with multi-GPUs. Comput. Geosci. 2017, 102, 68–78. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Zhao, Y.; Zhu, H. Elastic wavefield separation in anisotropic media based on eigenform analysis and its application in reverse-time migration. Geophys. J. Int. 2019, 217, 1290–1313. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H.; McMechan, G.; Zhang, H.; Zhao, Y. Elastic least-squares reverse time migration in vertical transverse isotropic media. Geophysics 2019, 84, S539–S553. [Google Scholar] [CrossRef]
- Gu, B.L.; Li, Z.C.; Han, J.G. A wavefield-separation-based elastic least-squares reverse time migration. Geophysics 2018, 83, S279–S297. [Google Scholar] [CrossRef]
- Virieux, J. P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method. Geophysics 1986, 51, 889–901. [Google Scholar] [CrossRef]
- Graves, R.W. Simulating seismic wave progation in 3D elastic media using staggered-grid finite difference. Bull. Seismol. Soc. Am. 1996, 86, 1091–1106. [Google Scholar]
- Appelö, D.; Petersson, N.A. A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 2009, 5, 84–107. [Google Scholar]
- Ren, Z.M.; Li, Z.C.; Liu, Y.; Sen, M.K. Modeling of the acoustic wave equation by staggered-grid finite-difference schemes with high-order temporal and spatial accuracy. Bull. Seismol. Soc. Am. 2017, 107, 2160–2182. [Google Scholar] [CrossRef]
- Ren, Z.M.; Li, Z.C. High-order temporal and implicit spatial staggered-grid finite-difference operators for modelling seismic wave propagation. Geophys. J. Int. 2019, 217, 844–865. [Google Scholar] [CrossRef]
Layer | Lithology | (g/cm3) | Layer Thickness (m) | ||
---|---|---|---|---|---|
1 | mudstone | 2500 | 1450 | 1.8 | 200 |
2 | sandstone | 3100 | 1780 | 2.2 | 300 |
3 | coal seam | 2000 | 1150 | 1.4 | 15 |
4 | limestone | 3500 | 2020 | 2.3 | 285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Gu, B.; Zhu, G.; Liu, Z. High-Precision Depth Domain Migration Method in Imaging of 3D Seismic Data in Coalfield. Remote Sens. 2022, 14, 2850. https://doi.org/10.3390/rs14122850
Han J, Gu B, Zhu G, Liu Z. High-Precision Depth Domain Migration Method in Imaging of 3D Seismic Data in Coalfield. Remote Sensing. 2022; 14(12):2850. https://doi.org/10.3390/rs14122850
Chicago/Turabian StyleHan, Jianguang, Bingluo Gu, Guanghui Zhu, and Zhiwei Liu. 2022. "High-Precision Depth Domain Migration Method in Imaging of 3D Seismic Data in Coalfield" Remote Sensing 14, no. 12: 2850. https://doi.org/10.3390/rs14122850
APA StyleHan, J., Gu, B., Zhu, G., & Liu, Z. (2022). High-Precision Depth Domain Migration Method in Imaging of 3D Seismic Data in Coalfield. Remote Sensing, 14(12), 2850. https://doi.org/10.3390/rs14122850