Ground and Satellite-Based Methods of Measuring Deformation at a UK Landslide Observatory: Comparison and Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Geophysical Data
3. Results
3.1. InSAR Data and Corner Reflectors
3.2. InSAR Results before the Installation of Corner Reflectors
3.3. InSAR Results after the Installation of Corner Reflectors
3.4. Movement on the Landslide in January 2021
3.5. Relationship to Soil Moisture
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- González, P.J.; Bagnardi, M.; Hooper, A.J.; Larsen, Y.; Marinkovic, P.; Samsonov, S.V.; Wright, T.J. The 2014–2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 2015, 42, 9239–9246. [Google Scholar] [CrossRef] [Green Version]
- Delouis, B.; Nocquet, J.M.; Vallée, M. Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Meng, X.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 2018, 15, 1299–1315. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Selvakumaran, S.; Webb, G.; Bennetts, J.; Rossi, C.; Barton, E.; Middleton, C. Understanding Insar Measurement Through Comparison With Traditional Structural Monitoring-Waterloo Bridge, London. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6368–6371. [Google Scholar]
- Pennington, C.; Freeborough, K.; Dashwood, C.; Dijkstra, T.; Lawrie, K. The National Landslide Database of Great Britain: Acquisition, communication and the role of social media. Geomorphology 2015, 249, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.; Culshaw, M.; Dashwood, C.; Pennington, C. Landslide management in the UK: The problem of managing hazards in a “low-risk” environment. Landslides 2013, 10, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Pennington, C.; Harrison, A. 2012: Landslide year? Geoscientist 2013, 23, 10–15. [Google Scholar]
- Gunn, D.; Chambers, J.; Hobbs, P.; Ford, J.; Wilkinson, P.; Jenkins, G.; Merritt, A. Rapid observations to guide the design of systems for long-term monitoring of a complex landslide in the Upper Lias clays of North Yorkshire, UK. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 323–336. [Google Scholar] [CrossRef]
- Uhlemann, S.; Chambers, J.; Wilkinson, P.; Maurer, H.; Merritt, A.; Meldrum, P.; Kuras, O.; Gunn, D.; Smith, A.; Dijkstra, T. Four-dimensional imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf. 2017, 122, 398–418. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.; Weller, A.; Gunn, D.; Kuras, O.; Wilkinson, P.; Meldrum, P.; Ogilvy, R.; Jenkins, G.; Gibson, A.; Ford, S.; et al. Geophysical anatomy of the Hollin Hill Landslide, North Yorkshire, UK. In Proceedings of the Near Surface 2008—14th EAGE European Meeting of Environmental and Engineering Geophysics, Krakow, Poland, 15–17 September 2008. [Google Scholar]
- Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology 2016, 253, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Boyd, J.; Chambers, J.; Wilkinson, P.; Peppa, M.; Watlet, A.; Kirkham, M.; Jones, L.; Swift, R.; Meldrum, P.; Uhlemann, S.; et al. A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides 2021, 18, 2689–2704. [Google Scholar] [CrossRef]
- Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J. Landslide characterization using P-and S-wave seismic refraction tomography—The importance of elastic moduli. J. Appl. Geophys. 2016, 134, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.; Wilkinson, P.; Kuras, O.; Ford, J.; Gunn, D.; Meldrum, P.; Pennington, C.; Weller, A.; Hobbs, P.; Ogilvy, R. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 2011, 125, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Whiteley, J.; Watlet, A.; Uhlemann, S.; Wilkinson, P.; Boyd, J.; Jordan, C.; Kendall, J.; Chambers, J. Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Eng. Geol. 2021, 290, 106189. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Whiteley, J.; Chambers, J.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J. Geophysical monitoring of moisture-induced landslides: A review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef] [Green Version]
- Slater, L.; Binley, A. Advancing hydrological process understanding from long-term resistivity monitoring systems. Wiley Interdiscip. Rev. Water 2021, 8, e1513. [Google Scholar] [CrossRef]
- Kuras, O.; Pritchard, J.D.; Meldrum, P.I.; Chambers, J.E.; Wilkinson, P.B.; Ogilvy, R.D.; Wealthall, G.P. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). Comptes Rendus Geosci. 2009, 341, 868–885. [Google Scholar] [CrossRef] [Green Version]
- Ogilvy, R.; Meldrum, P.; Kuras, O.; Wilkinson, P.; Chambers, J.; Sen, M.; Pulido-Bosch, A.; Gisbert, J.; Jorreto, S.; Frances, I.; et al. Automated monitoring of coastal aquifers with electrical resistivity tomography. Near Surf. Geophys. 2009, 7, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Waxman, M.H.; Smits, L. Electrical conductivities in oil-bearing shaly sands. Soc. Pet. Eng. J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Holmes, J.; Chambers, J.; Meldrum, P.; Wilkinson, P.; Boyd, J.; Williamson, P.; Huntley, D.; Sattler, K.; Elwood, D.; Sivakumar, V.; et al. Four-dimensional electrical resistivity tomography for continuous, near-real-time monitoring of a landslide affecting transport infrastructure in British Columbia, Canada. Near Surf. Geophys. 2020, 18, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Stanley, S.; Antoniou, V.; Ball, L.; Bennett, E.; Blake, J.; Boorman, D.; Brooks, M.; Clarke, M.; Cooper, H.; Cowan, N.; et al. Daily and Sub-Daily Hydrometeorological and Soil Data (2013–2017) [COSMOS-UK]; NERC Environmental Information Data Centre: Wallingford, UK, 2019. [Google Scholar]
- Zreda, M.; Shuttleworth, W.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The cosmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef] [Green Version]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Brief communication: Landslide motion from cross correlation of UAV-derived morphological attributes. Nat. Hazards Earth Syst. Sci. 2017, 17, 2143–2150. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.; Chambers, J.; Wilkinson, P.; Uhlemann, S.; Merritt, A.; Meldrum, P.; Swift, R.; Kirkham, M.; Jones, L.; Binley, A. Linking Geoelectrical Monitoring to Shear Strength—A Tool for Improving Understanding of Slope Scale Stability. In Proceedings of the 25th European Meeting of Environmental and Engineering Geophysics, The Hague, The Netherlands, 8–12 September 2019. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Kellndorfer, J.; Cartus, O.; Lavalle, M.; Magnard, C.; Milillo, P.; Oveisgharan, S.; Osmanoglu, B.; Rosen, P.A.; Wegmüller, U. Global seasonal Sentinel-1 interferometric coherence and backscatter data set. Sci. Data 2022, 9, 1–16. [Google Scholar] [CrossRef]
- De Zan, F.; Zonno, M.; López-Dekker, P. Phase inconsistencies and multiple scattering in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6608–6616. [Google Scholar] [CrossRef] [Green Version]
- Spaans, K.; Hooper, A. InSAR processing for volcano monitoring and other near-real time applications. J. Geophys. Res. Solid Earth 2016, 121, 2947–2960. [Google Scholar] [CrossRef] [Green Version]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Garthwaite, M.C. On the design of radar corner reflectors for deformation monitoring in multi-frequency InSAR. Remote Sens. 2017, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000; Volume 1620, p. 1620. [Google Scholar]
- Lazeckỳ, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A.; et al. LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Wright, T.J.; Hooper, A.J.; Jordan, C.; Novellino, A.; Bateson, L.; Biggs, J. Benchmarking and inter-comparison of Sentinel-1 InSAR velocities and time series. Remote Sens. Environ. 2021, 256, 112306. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Hooper, A.; Spaans, K.; Bekaert, D.; Cuenca, M.C.; Arıkan, M.; Oyen, A. StaMPS/MTI Manual; Delft Institute of Earth Observation and Space Systems Delft University of Technology: Delft, The Netherlands, 2010; Volume 1, p. 2629. [Google Scholar]
- Belcher, S.; Slingo, J.; McCarthy, R.; Burton, C.; Betts, R.; Brown, S.; Clark, R.; Kahana, R.; Kendon, E.; Knight, J.; et al. Too Hot, Too Cold, Too Wet, Too Dry: Drivers and Impacts of Seasonal Weather in the UK; MetOffice: Exeter, UK, 2014.
- Novellino, A.; Mansour, M.; Wang, L. Measuring Soil Moisture with Spaceborne Synthetic Aperture Radar Data; British Geological Survey: Nottingham, UK, 2020; 45p. [Google Scholar]
- Evans, J.; Ward, H.; Blake, J.; Hewitt, E.; Morrison, R.; Fry, M.; Ball, L.; Doughty, L.; Libre, J.; Hitt, O.; et al. Soil water content in southern England derived from a cosmic-ray soil moisture observing system–COSMOS-UK. Hydrol. Process. 2016, 30, 4987–4999. [Google Scholar] [CrossRef] [Green Version]
- De Zan, F.; Gomba, G. Vegetation and soil moisture inversion from SAR closure phases: First experiments and results. Remote Sens. Environ. 2018, 217, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Bovenga, F.; Pasquariello, G.; Pellicani, R.; Refice, A.; Spilotro, G. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlatino (Italy). Catena 2017, 151, 49–62. [Google Scholar] [CrossRef]
- Dehls, J.F.; Lauknes, T.; Larsen, Y.; Hermanns, R.L. Operational Use of InSAR Corner Reflectors (CR) for Landslide Hazard and Risk Assessment in Norway Using Sentinel-1 and Radarsat-2. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2018. [Google Scholar]
Setup | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | Time Period |
---|---|---|---|---|---|---|---|
Before | 9.07 | 6.01 | 9.02 | 7.31 | 5.03 | 10.21 | April 2019–July 2019 |
Before | 8.30 | 6.65 | 8.82 | 5.99 | 7.18 | 8.76 | July 2018–July 2019 |
After | 1.65 | 8.91 | 1.33 | 1.71 | 1.98 | 7.86 | August 2019–November 2019 |
After | 4.62 | 7.83 | 9.50 | 7.30 | 3.48 | 8.25 | August 2019–August 2020 |
Setup | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | Time Period |
---|---|---|---|---|---|---|---|
Before | 0.22 | 0.48 | 0.25 | 0.24 | 0.51 | 0.32 | April 2019–July 2019 |
Before | 0.05 | 0.43 | 0.36 | 0.44 | 0.13 | 0.13 | July 2018–July 2019 |
After | 0.92 | 0.07 | 0.95 | 0.94 | 0.95 | 0.73 | August 2019–November 2019 |
After | 0.46 | 0.16 | 0.49 | 0.57 | 0.79 | 0.21 | August 2019–August 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelevitz, K.; Novellino, A.; Watlet, A.; Boyd, J.; Whiteley, J.; Chambers, J.; Jordan, C.; Wright, T.; Hooper, A.; Biggs, J. Ground and Satellite-Based Methods of Measuring Deformation at a UK Landslide Observatory: Comparison and Integration. Remote Sens. 2022, 14, 2836. https://doi.org/10.3390/rs14122836
Kelevitz K, Novellino A, Watlet A, Boyd J, Whiteley J, Chambers J, Jordan C, Wright T, Hooper A, Biggs J. Ground and Satellite-Based Methods of Measuring Deformation at a UK Landslide Observatory: Comparison and Integration. Remote Sensing. 2022; 14(12):2836. https://doi.org/10.3390/rs14122836
Chicago/Turabian StyleKelevitz, Krisztina, Alessandro Novellino, Arnaud Watlet, James Boyd, James Whiteley, Jonathan Chambers, Colm Jordan, Tim Wright, Andrew Hooper, and Juliet Biggs. 2022. "Ground and Satellite-Based Methods of Measuring Deformation at a UK Landslide Observatory: Comparison and Integration" Remote Sensing 14, no. 12: 2836. https://doi.org/10.3390/rs14122836
APA StyleKelevitz, K., Novellino, A., Watlet, A., Boyd, J., Whiteley, J., Chambers, J., Jordan, C., Wright, T., Hooper, A., & Biggs, J. (2022). Ground and Satellite-Based Methods of Measuring Deformation at a UK Landslide Observatory: Comparison and Integration. Remote Sensing, 14(12), 2836. https://doi.org/10.3390/rs14122836