Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Key Restoration Areas Framework
2.4. Soil Conservation Service
2.5. Sand Fixation Service
2.6. Habitat Quality
2.7. Trend Analysis
2.8. Ecosystem Vulnerability
2.9. Ecological Restoration Zoning Standards
2.10. Model Validation
3. Results
3.1. Model Validation
3.2. The Changing Trend of Soil Conservation Services, Sand Fixation Services, and Habitat Quality
3.3. Ecosystem Vulnerability Pattern Analysis in Inner Mongolia
3.4. Key Ecological Restoration Areas in Inner Mongolia
4. Discussion
4.1. Ecosystem Services Are Influenced by Climate and Human Activities
4.2. High Climate Variability in Northeastern Inner Mongolia and Poor Resilience in Eastern Inner Mongolia
4.3. Innovation and Limitations
4.4. Implications for Land Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hori, Y.; Stuhlberger, C.; Simonett, O. Desertification: A Visual Synthesis. UNCCD, 2011. Available online: https://catalogue.unccd.int/10_Desertification_EN.pdf (accessed on 31 March 2022).
- Nkonya, E.; Anderson, W.; Kato, E.; Koo, J.; Mirzabaev, A.; von Braun, J.; Meyer, S. Global cost of land degradation. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development, 1st ed.; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 117–165. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification Synthesis. In The Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Huang, J.P.; Yu, H.P.; Guan, X.D.; Wang, G.Y.; Guo, R.X. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Koutroulis, A.G. Dryland changes under different levels of global warming. Sci. Total Environ. 2019, 655, 482–511. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Cheng, X.; Ma, K.X.; Zhao, X.Q.; Qu, J.P. Offering the win-win solutions between ecological conservation and livelihood development: National parks in Qinghai, China. Geogr. Sustain. 2020, 14, 251–255. [Google Scholar] [CrossRef]
- Aronson, J.C.; Blatt, C.M.; Aronson, T.B. Restoring ecosystem health to improve human health and well-being: Physicians and restoration ecologists unite in a common cause. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Tolvanen, A.; Aronson, J. Ecological restoration, ecosystem services, and land use: A European perspective. Ecol. Soc. 2016, 21, 47. [Google Scholar] [CrossRef] [Green Version]
- European Commission. The EU Biodiversity Strategy to 2020. European Commission 2011. Available online: http://ec.europa.eu/environment/nature/info/pubs/docs/brochures/2020%20Biod%20brochure%20final%20lowres.pdf (accessed on 31 March 2022).
- UN Convention to Combat Desertification. Land Matters for Climate: Reducing the Gap and Approaching the Target. UNCCD, 2015. Available online: https://www.unccd.int/sites/default/files/documents/2015Nov_Land_matters_For_Climate_ENG_0.pdf (accessed on 31 March 2022).
- Neeson, T.M.; Smith, S.D.P.; Allan, J.D.; McIntyre, P.B. Prioritizing ecological restoration among sites in multi-stressor landscapes. Ecol. Appl. 2016, 26, 1785–1796. [Google Scholar] [CrossRef] [Green Version]
- Balensiefer, M.; Rossi, R.; Ardinghi, N.; Cenni, M.; Ugolini, M. SER International Primer on Ecological Restoration. 2004. Available online: https://floridalivingshorelines.com/wp-content/uploads/2015/05/Clewell.Aronson.Winterhalder.2004-SER-Primer.pdf (accessed on 31 March 2022).
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Junqueira, A.B.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Niamir, A.; Broadbent, E.; Crouzeilles, R.; Barros, F.S.M.; Zambrano, A.M.A.; Baccini, A.; Aronson, J.; Goetz, S.; Reid, J.L.; et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 2019, 5, eaav3223. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Shi, X.Y.; Wu, Q.Q. Effects of protection and restoration on reducing ecological vulnerability. Sci. Total Environ. 2021, 761, 143180. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.K.; Liou, Y.A.; Li, M.H.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Y.X.; Wang, Y.J.; Fu, B.J. Greater increases in China’s dryland ecosystem vulnerability in drier conditions than in wetter conditions. J. Environ. Manag. 2021, 291, 112689. [Google Scholar] [CrossRef]
- Martin, D.M. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 2017, 25, 668–673. [Google Scholar] [CrossRef]
- An, H.; Tang, Z.S.; Keesstra, S.; Shangguan, Z.P. Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Sci. Rep. 2019, 9, 9422. [Google Scholar] [CrossRef]
- Zong, N.; Shi, P.L.; Sun, J. Estimation of ecological thresholds in plant and soil properties during desertification in an alpine grassland. Arid Zone Res. 2020, 37, 1580–1589. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Xu, W.H.; Xiao, Y.; Zhang, J.J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.G.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.; Chen, W.P.; Hou, Y.; Li, Y.Z. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Trabucchi, M.; O’Farrell, P.J.; Notivol, E.; Comin, F.A. Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin. Environ. Manag. 2014, 53, 1132–1145. [Google Scholar] [CrossRef]
- del Rio-Mena, T.; Willemen, L.; Tesfamariam, G.T.; Beukes, O.; Nelson, A. Remote sensing for mapping ecosystem services to support evaluation of ecological restoration interventions in an arid landscape. Ecol. Indic. 2020, 113, 106182. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.W.; Duan, B.L.; Hu, X.P.; Cherubini, F. Coupling trade-offs and supply-demand of ecosystem services (ES): A new opportunity for ES management. Geogr. Sustain. 2021, 2, 275–280. [Google Scholar] [CrossRef]
- Fang, M.Z.; Si, G.X.; Yu, Q.; Huang, H.G.; Huang, Y.; Liu, W.; Guo, H.Q. Study on the Relationship between Topological Characteristics of Vegetation Ecospatial Network and Carbon Sequestration Capacity in the Yellow River Basin, China. Remote Sens. 2021, 13, 4926. [Google Scholar] [CrossRef]
- Dai, Y.J.; Tian, L.; Zhu, P.Z.; Dong, Z.; Zhang, R.H. Dynamic aeolian erosion evaluation and ecological service assessment in Inner Mongolia, northern China. Geoderma 2022, 406, 115518. [Google Scholar] [CrossRef]
- Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evans, J.P.; Wang, G.J. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 2015, 5, 470–474. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.C.; Zhao, W.W.; Pereira, P. Soil conservation service underpins sustainable development goals. Glob. Ecol. Conserv. 2022, 33, e01974. [Google Scholar] [CrossRef]
- Chen, Y.H.; Xu, M.H.; Wang, Z.L.; Chen, W.J.; Lai, C.G. Reexamination of the Xie model and spatiotemporal variability in rainfall erosivity in mainland China from 1960 to 2018. Catena 2020, 195, 104837. [Google Scholar] [CrossRef]
- Williams, J.R. The Erosion-Productivity Impact Calculator (Epic) Model: A Case History. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1990, 329, 421–428. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, W.W.; Li, C.J.; Pereira, P. Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018. Geoderma 2021, 401, 115319. [Google Scholar] [CrossRef]
- Foster, G.R.; Wischmeier, W.H. Evaluating Irregular Slopes for Soil Loss Prediction. Trans. ASAE 1974, 17, 305–309. [Google Scholar] [CrossRef]
- Roels, B.; Donders, S.; Werger, M.J.A.; Dong, M. Relation of wind-induced sand displacement to plant biomass and plant sand-binding capacity. J. Integr. Plant Biol. 2001, 43, 979–982. [Google Scholar]
- Van Pelt, R.S.; Zobeck, T.M.; Potter, K.N.; Stout, J.E.; Popham, T.W. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events. Environ. Model. Softw. 2004, 19, 191–198. [Google Scholar] [CrossRef]
- Hou, Y.Z.; Zhao, W.W.; Liu, Y.X.; Yang, S.Q.; Hu, X.P.; Cherubini, F. Relationships of multiple landscape services and their influencing factors on the Qinghai-Tibet Plateau. Landsc. Ecol. 2021, 36, 1987–2005. [Google Scholar] [CrossRef]
- Li, S.S.; Yang, S.N.; Liu, X.F.; Liu, Y.X.; Shi, M.M. NDVI-Based Analysis on the Influence of Climate Change and Human Activities on Vegetation Restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.Q.; Feng, X.M.; Fu, B.J.; Wang, S.; Ji, F.; Pan, S.F. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Liu, Y.X.; Fu, B.J.; Liu, Y.; Zhao, W.W.; Wang, S. Vulnerability assessment of the global water erosion tendency: Vegetation greening can partly offset increasing rainfall stress. Land. Degrad. Dev. 2019, 30, 1061–1069. [Google Scholar] [CrossRef]
- Li, D.L.; Wu, S.Y.; Liu, L.B.; Zhang, Y.T.; Li, S.C. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.W.; Cherubini, F.; Hu, X.P.; Pereira, P. Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. Landsc. Ecol. 2021, 36, 3451–3471. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S. Regional characteristics of long-term changes in total and extreme precipitations over China and their links to atmospheric-oceanic features. Int. J. Clim. 2017, 37, 751–769. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning, and influential factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.P.; Ciais, P.; Tommervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Zeng, Z.Z.; Peng, L.Q.; Piao, S.L. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 2018, 33, 9–25. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.B.; Xiao, J.F.; Ju, W.M.; Xu, K.; Zhou, Y.L.; Zhao, Y.T. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 2016, 11, 094010. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Pena-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.M.; Lu, X.J.; Zheng, H.X.; Wang, Y.P.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Fu, B.J.; Lu, Y.H.; Wang, Z.; Gao, G.Y. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China. Geomorphology 2012, 138, 404–414. [Google Scholar] [CrossRef]
- Bodi, M.B.; Doerr, S.H.; Cerda, A.; Mataix-Solera, J. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 2012, 191, 14–23. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, B.J.; Gao, G.Y.; Lu, Y.H.; Liu, Y.; Lu, N.; Wang, S. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef]
- Mankin, J.S.; Seager, R.; Smerdon, J.E.; Cook, B.I.; Williams, A.P.; Horton, R.M. Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate. Geophys. Res. Lett. 2018, 45, 3115–3125. [Google Scholar] [CrossRef]
- Zeng, Z.Z.; Piao, S.L.; Li, L.Z.X.; Zhou, L.M.; Ciais, P.; Wang, T.; Li, Y.; Lian, X.; Wood, E.F.; Friedlingstein, P.; et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Chang. 2017, 7, 432–436. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Qi, Y.Q.; Liu, J.Y.; Shi, H.D.; Hu, Y.F.; Zhuang, D.F. Using Cs-137 tracing technique to estimate wind erosion rates in the typical steppe region, northern Mongolian Plateau. Chin. Sci. Bull. 2008, 53, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Du, H.Q.; Wang, T.; Xue, X. Potential wind erosion rate response to climate and land-use changes in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River, China, 1986-2013. Earth Surf. Process. Landf. 2017, 42, 1923–1937. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Zhang, Z.D.; Zou, X.Y.; Zhang, K.L.; Zhang, W.B. Quantifying wind erosion at landscape scale in a temperate grassland: Nonignorable influence of topography. Geomorphology 2020, 370, 107401. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X.S. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Li, D.J.; Xu, D.Y.; Wang, Z.Y.; You, X.G.; Zhang, X.Y.; Song, A.L. The dynamics of sand-Stabilization services in Inner Mongolia, China from 1981 to 2010 and its relationship with climate change and human activities. Ecol. Indic. 2018, 88, 351–360. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Fan, J.W.; Cao, W.; Harris, W.; Li, Y.Z.; Chi, W.F.; Wang, S.Z. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef]
- Liu, Y.L.; Kumar, M.; Katul, G.G.; Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Chang. 2019, 9, 880–885. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Chapin, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Grime, J.P.; Brown, V.K.; Thompson, K.; Masters, G.J.; Hillier, S.H.; Clarke, I.P.; Askew, A.P.; Corker, D.; Kielty, J.P. The response of two contrasting limestone grasslands to simulated climate change. Science 2000, 289, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schutt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Ferro, V. Deducing the USLE mathematical structure by dimensional analysis and self-similarity theory. Biosyst. Eng. 2010, 106, 216–220. [Google Scholar] [CrossRef]
- Risse, L.M.; Nearing, M.A.; Nicks, A.D.; Laflen, J.M. Error Assessment in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1993, 57, 825–833. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Guo, Z.; Zobeck, T.M.; Zhang, K.; Li, F. Estimating potential wind erosion of agricultural lands in northern China using the Revised Wind Erosion Equation and geographic information systems. J. Soil Water Conserv. 2013, 68, 13–21. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Pena-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, eabl4649. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 2016, 48, 709–715. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Falk, D.A.; Banin, L.F.; Wagner, M.; Wilson, S.J.; Grabowski, R.C.; Suding, K.N. The intervention continuum in restoration ecology: Rethinking the active-passive dichotomy. Restor. Ecol. 2021, e13535. [Google Scholar] [CrossRef]
- McConkey, B.G.; Dyck, F.B. Summerfallow oilseed barrier strips for wind erosion control: Influences on the subsequent crop. Can. J. Plant Sci. 1996, 76, 675–682. [Google Scholar] [CrossRef]
- Liu, B.L.; Zhang, W.M.; Qu, J.J.; Zhang, K.C.; Han, Q.J. Controlling windblown sand problems by an artificial gravel surface: A case study over the Gobi surface of the Mogao Grottoes. Geomorphology 2011, 134, 461–469. [Google Scholar] [CrossRef]
- Dai, Y.J.; Dong, Z.; Li, H.L.; He, Y.X.; Li, J.R.; Guo, J.Y. Effects of checkerboard barriers on the distribution of aeolian sandy soil particles and soil organic carbon. Geomorphology 2019, 338, 79–87. [Google Scholar] [CrossRef]
- Li, S.H.; Li, C.; Yao, D.; Wang, S. Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration. Ecol. Eng. 2020, 152, 105883. [Google Scholar] [CrossRef]
Variables | Data Type | Source | Dataset | Resolution | |
---|---|---|---|---|---|
Soil conservation service | Daily rainfall data | Station-based observation data | China Meteorological Administration (2000–2020) | China surface climate data daily data set (V3.0) | 1 km, simple kriging interpolation |
Soil organic carbon | Raster data | ISRIC | SoilGrids | 250 m | |
Sand content | Raster data | ISRIC | SoilGrids | 250 m | |
Silty content | Raster data | ISRIC | SoilGrids | 250 m | |
Clay content | Raster data | ISRIC | SoilGrids | 250 m | |
Digital elevation model (DEM) | Raster data | NASA | SRTM Digital Elevation Database v4.1 | 90 m | |
Normalized difference vegetation index (NDVI) | Raster data | LP DAAC (2000–2020) | MODIS (MOD13A1 product) | 1 km | |
Sand fixation service | Daily wind speed data | Station-based observation data | China Meteorological Administration (2000–2020) | China surface climate data daily data set (V3.0) | 1 km, simple kriging interpolation |
Daily temperature data | Station-based observation data | China Meteorological Administration (2000–2020) | China surface climate data daily data set (V3.0) | 1 km, simple kriging interpolation | |
Solar radiation | Station-based observation data | China Meteorological Administration (2000–2020) | China surface climate data daily data set (V3.0) | 1 km, simple kriging interpolation | |
Snow depth | Raster data | National Qinghai-Tibet Plateau Scientific Data Center | Long-term series of daily snow depth datasets in China (1979–2020) | 25 km | |
Habitat quality | Land use | Raster data | European Space Agency (ESA) | CCI land cover V2 | 1 km, simple kriging interpolation |
Vulnerability | Leaf area index (LAI) | Raster data | NASA | Global Inventory Modelling and Mapping Studies (GIMMS) LAI3g dataset | 1 km |
Daily atmospheric pressure data | Station-based observation data | China Meteorological Administration (2000–2020) | China surface climate data daily data set (V3.0) | 1 km, simple kriging interpolation | |
Daily relative humidity data | Station-based observation data | China Meteorological Administration (2000–2020) | China surface climate data daily data set (V3.0) | 1 km, simple kriging interpolation | |
Validation | Sediment transport | Book | National Library of China | hydrologic data yearbook | - |
137Cs | Point | [30], Shapotou Desert Experimental Research Station of the Chinese Academy of Sciences | 137Cs | - | |
Above-ground biomass carbon | Raster data | [31] | Passive microwave-based global above-ground biomass carbon dataset (1993–2012) version 1.0 | 25 km | |
Tree cover | Raster data | [32] | Global Forest Change dataset | 30 m |
Class | Class Standard |
---|---|
Zero degradation | No degradation |
Reserve | Areas with high ecosystem vulnerability but do not have the degradation |
Ecological restoration areas | Areas with a slight degradation of ecosystem services |
Priority areas of ecological restoration | Areas with degraded ecosystem services and high ecosystem vulnerability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Liu, X.; Zhao, W.; Yao, Y.; Zhou, A.; Liu, X.; Pereira, P. Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service. Remote Sens. 2022, 14, 2729. https://doi.org/10.3390/rs14122729
Feng S, Liu X, Zhao W, Yao Y, Zhou A, Liu X, Pereira P. Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service. Remote Sensing. 2022; 14(12):2729. https://doi.org/10.3390/rs14122729
Chicago/Turabian StyleFeng, Siyuan, Xin Liu, Wenwu Zhao, Ying Yao, Ao Zhou, Xiaoxing Liu, and Paulo Pereira. 2022. "Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service" Remote Sensing 14, no. 12: 2729. https://doi.org/10.3390/rs14122729
APA StyleFeng, S., Liu, X., Zhao, W., Yao, Y., Zhou, A., Liu, X., & Pereira, P. (2022). Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service. Remote Sensing, 14(12), 2729. https://doi.org/10.3390/rs14122729