Hyperspectral Anomaly Detection Based on Wasserstein Distance and Spatial Filtering
Abstract
:1. Introduction
- To our knowledge, no studies have been reported on how to estimate the anomaly target distribution and detect anomalies via the dissimilarity between background and anomaly target distributions. With the assumption that both background and anomaly target obey the multivariate Gaussian distribution, the background and anomaly target distributions are estimated in the local regions of HSI and the anomaly intensity of test pixels centered in the local regions are evaluated by the dissimilarity between two distributions, which opens up an innovative way for anomalous area target detection.
- To determine anomalies based on the background and anomaly target distributions, a modified WD is developed to measure the dissimilarity between two distributions, which can effectively improve the discrimination capacity between anomalies and background compared with the original one.
- GF, TVCF, and Maxtree filter are exploited to refine detection results. It is demonstrated that the combination of multiple filters can significantly improve AD performance.
2. Methodology
2.1. Anomaly Detection with Wasserstein Distance
2.2. Rectification with Guided Filtering
2.3. Background Suppression with Spatial Features
3. Experimental Results and Analysis
3.1. Hyperspectral Data Sets
- Airport-Beach-Urban Data Set [13]: The Airport-Beach-Urban (ABU) data set contains 13 HSIs with pixels and the corresponding references. The ABU data set is captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS-03) sensors in the airport, beach, and urban scenes. Since flight heights are different, the spatial resolutions of images and the scales of anomalies are different, which can be observed in Figure 3, Figure 4 and Figure 5.
- AVIRIS Data Set [32]: The AVIRIS data set contains two HSIs captured by AVIRIS sensor in San Diego, CA, USA. The AVIRIS-1 is with pixels and 244 spectral bands, where three planes with total number of 58 pixels are taken as anomalies. The AVIRIS-2 is with pixels and 189 spectral bands, where three air crafts with a total number of 143 pixels are considered as anomalies. The sample images and their reference maps are given in Figure 6.
3.2. Detection Performance
3.3. Ablation Experiments
3.4. Parameter Analysis
3.5. Comparison of Metrics between Gaussian Random Vectors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freitas, S.; Silva, H.; Silva, E. Remote Hyperspectral Imaging Acquisition and Characterization for Marine Litter Detection. Remote Sens. 2021, 13, 2536. [Google Scholar] [CrossRef]
- Han, X.; Zhang, H.; Sun, W. Spectral Anomaly Detection Based on Dictionary Learning for Sea Surfaces. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1502505. [Google Scholar] [CrossRef]
- Reed, I.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Molero, J.M.; Garzón, E.M.; García, I.; Plaza, A. Analysis and Optimizations of Global and Local Versions of the RX Algorithm for Anomaly Detection in Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 801–814. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, L.; Wang, Y. A Superpixel-Based Dual Window RX for Hyperspectral Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1233–1237. [Google Scholar] [CrossRef]
- Qu, J.; Du, Q.; Li, Y.; Tian, L.; Xia, H. Anomaly Detection in Hyperspectral Imagery Based on Gaussian Mixture Model. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9504–9517. [Google Scholar] [CrossRef]
- Carlotto, M. A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 374–387. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Collaborative Representation for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–1474. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1376–1389. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, W.; Guo, R.; Ayhan, B.; Kwan, C.; Vance, S.; Qi, H. Hyperspectral Anomaly Detection Through Spectral Unmixing and Dictionary-Based Low-Rank Decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4391–4405. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, Y.; Zhang, J.; Zeng, D. Hyperspectral Anomaly Detection via Low-Rank Decomposition and Morphological Filtering. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5511905. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Hao, Q.; Duan, P.; Kang, X. Hyperspectral Anomaly Detection With Multiscale Attribute and Edge-Preserving Filters. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1605–1609. [Google Scholar] [CrossRef]
- Jiang, K.; Xie, W.; Li, Y.; Lei, J.; He, G.; Du, Q. Semisupervised spectral learning with generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5224–5236. [Google Scholar] [CrossRef]
- Song, X.; Aryal, S.; Ting, K.M.; Liu, Z.; He, B. Spectral-Spatial Anomaly Detection of Hyperspectral Data Based on Improved Isolation Forest. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5516016. [Google Scholar] [CrossRef]
- Xiang, P.; Song, J.; Qin, H.; Tan, W.; Li, H.; Zhou, H. Visual Attention and Background Subtraction with Adaptive Weight for Hyperspectral Anomaly Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2270–2283. [Google Scholar] [CrossRef]
- Xie, W.; Jiang, T.; Li, Y.; Jia, X.; Lei, J. Structure Tensor and Guided Filtering-Based Algorithm for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4218–4230. [Google Scholar] [CrossRef]
- Lei, J.; Xie, W.; Yang, J.; Li, Y.; Chang, C.I. Spectral–Spatial Feature Extraction for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8131–8143. [Google Scholar] [CrossRef]
- Wang, R.; Nie, F.; Wang, Z.; He, F.; Li, X. Multiple Features and Isolation Forest-Based Fast Anomaly Detector for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6664–6676. [Google Scholar] [CrossRef]
- Kolouri, S.; Nadjahi, K.; Simsekli, U.; Badeau, R.; Rohde, G.K. Generalized Sliced Wasserstein Distances. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2019. [Google Scholar]
- Panaretos, V.M.; Zemel, Y. Statistical Aspects of Wasserstein Distances. Annu. Rev. Stat. Its Appl. 2019, 6, 405–431. [Google Scholar] [CrossRef] [Green Version]
- Zorzi, M. Optimal Transport Between Gaussian Stationary Processes. IEEE Trans. Autom. Control 2021, 66, 4939–4944. [Google Scholar] [CrossRef]
- Ramponi, F.; Ferrante, A.; Pavon, M. A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation. IEEE Trans. Autom. Control 2009, 54, 2376–2388. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, A.; Pavon, M.; Ramponi, F. Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation. IEEE Trans. Autom. Control 2008, 53, 954–967. [Google Scholar] [CrossRef]
- Kolouri, S.; Park, S.R.; Thorpe, M.; Slepcev, D.; Rohde, G.K. Optimal Mass Transport: Signal processing and machine-learning applications. IEEE Signal Process. Mag. 2017, 34, 43–59. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Qu, J.; Lei, J.; Li, Y.; Dong, W.; Zeng, Z.; Chen, D. Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic Images Fusion. Remote Sens. 2018, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Sbalzarini, I.F. Curvature Filters Efficiently Reduce Certain Variational Energies. IEEE Trans. Image Process. 2017, 26, 1786–1798. [Google Scholar] [CrossRef] [Green Version]
- Salembier, P.; Liesegang, S.; López-Martínez, C. Ship Detection in SAR Images Based on Maxtree Representation and Graph Signal Processing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2709–2724. [Google Scholar] [CrossRef] [Green Version]
- Carlinet, E.; Géraud, T. A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 2014, 23, 3885–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Carlinet, E.; Géraud, T.; Najman, L. Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, X.; Zhong, Y.; Zhang, L. Hyperspectral anomaly detection via locally enhanced low-rank prior. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6995–7009. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Duan, P.; Kang, X. Hyperspectral Anomaly Detection With Kernel Isolation Forest. IEEE Trans. Geosci. Remote Sens. 2020, 58, 319–329. [Google Scholar] [CrossRef]
- Kerekes, J. Receiver Operating Characteristic Curve Confidence Intervals and Regions. IEEE Geosci. Remote Sens. Lett. 2008, 5, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Flach, P.A.; Hernández-Orallo, J.; Ramirez, C.F. A coherent interpretation of AUC as a measure of aggregated classification performance. In Proceedings of the ICML, Bellevue, WA, USA, 28 June–2 July 2011. [Google Scholar]
- Zorzi, M. On the robustness of the Bayes and Wiener estimators under model uncertainty. Automatica 2017, 83, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Commun. Technol. 1967, 15, 52–60. [Google Scholar] [CrossRef]
Images | GRX | LRX | CRD | LRASR | ADLR | KIFD | Proposed |
---|---|---|---|---|---|---|---|
Airport-1 | 0.8221 | 0.9458 | 0.9643 | 0.8565 | 0.8308 | 0.9382 | 0.9516 |
Airport-2 | 0.8404 | 0.9492 | 0.9444 | 0.8848 | 0.9028 | 0.9785 | 0.9879 |
Airport-3 | 0.9288 | 0.9467 | 0.9564 | 0.9014 | 0.8640 | 0.9623 | 0.9842 |
Airport-4 | 0.9526 | 0.9538 | 0.9445 | 0.9250 | 0.9348 | 0.9816 | 0.9969 |
Beach-1 | 0.9807 | 0.9956 | 0.9917 | 0.9721 | 0.9524 | 0.9902 | 0.9998 |
Beach-2 | 0.9106 | 0.9777 | 0.9645 | 0.9504 | 0.9233 | 0.9894 | 0.9950 |
Beach-3 | 0.9999 | 0.9998 | 0.9985 | 0.9935 | 0.9689 | 0.9986 | 0.9999 |
Beach-4 | 0.9538 | 0.9391 | 0.9455 | 0.9593 | 0.9216 | 0.8223 | 0.9969 |
Urban-1 | 0.9907 | 0.9962 | 0.9961 | 0.9312 | 0.9553 | 0.9160 | 0.9992 |
Urban-2 | 0.9946 | 0.9250 | 0.9091 | 0.9983 | 0.9518 | 0.8546 | 0.9990 |
Urban-3 | 0.9513 | 0.9800 | 0.9634 | 0.9709 | 0.9779 | 0.9913 | 0.9997 |
Urban-4 | 0.9887 | 0.9696 | 0.9816 | 0.9846 | 0.9827 | 0.9770 | 0.9894 |
Urban-5 | 0.9692 | 0.9538 | 0.9521 | 0.9686 | 0.9156 | 0.9863 | 0.9856 |
AVIRIS-1 | 0.8409 | 0.8729 | 0.9696 | 0.9229 | 0.9875 | 0.9833 | 0.9983 |
AVIRIS-2 | 0.9403 | 0.8655 | 0.9644 | 0.9413 | 0.9832 | 0.9911 | 0.9896 |
Images | AD-WD | AD-WD-GF | AD-WD-GF-TVCF | AD-WD-GF-Maxtree | AD-WDSF |
---|---|---|---|---|---|
Airport-1 | 0.9404 | 0.9292 | 0.8328 | 0.9503 | 0.9516 |
Airport-2 | 0.8975 | 0.9747 | 0.9873 | 0.9816 | 0.9879 |
Airport-3 | 0.9052 | 0.9488 | 0.9832 | 0.9633 | 0.9842 |
Airport-4 | 0.9334 | 0.9684 | 0.9965 | 0.9725 | 0.9969 |
Beach-1 | 0.9322 | 0.9896 | 0.9981 | 0.9975 | 0.9998 |
Beach-2 | 0.8462 | 0.8462 | 0.9935 | 0.9785 | 0.9950 |
Beach-3 | 0.9963 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Beach-4 | 0.9502 | 0.9967 | 0.9519 | 0.9967 | 0.9969 |
Urban-1 | 0.9356 | 0.9986 | 0.9263 | 0.9986 | 0.9992 |
Urban-2 | 0.9694 | 0.9953 | 0.9988 | 0.9953 | 0.9990 |
Urban-3 | 0.9568 | 0.9891 | 0.9791 | 0.9997 | 0.9999 |
Urban-4 | 0.9605 | 0.9894 | 0.9682 | 0.9894 | 0.9899 |
Urban-5 | 0.8636 | 0.9798 | 0.9849 | 0.9817 | 0.9856 |
AVIRIS-1 | 0.9685 | 0.9916 | 0.9980 | 0.9968 | 0.9983 |
AVIRIS-2 | 0.7981 | 0.9195 | 0.9785 | 0.9195 | 0.9895 |
Images | (3,5) | (3,7) | (5,7) | (5,9) | (7,9) |
---|---|---|---|---|---|
Airport-1 | 0.9516 | 0.9195 | 0.7236 | 0.7090 | 0.6130 |
Airport-2 | 0.9879 | 0.9711 | 0.8252 | 0.7166 | 0.6745 |
Airport-3 | 0.9842 | 0.9779 | 0.9363 | 0.9185 | 0.8835 |
Airport-4 | 0.9969 | 0.9857 | 0.9783 | 0.9663 | 0.9125 |
Beach-1 | 0.9998 | 0.9959 | 0.9824 | 0.9875 | 0.9712 |
Beach-2 | 0.9950 | 0.9875 | 0.9297 | 0.8393 | 0.9252 |
Beach-3 | 0.9999 | 0.9998 | 0.9999 | 0.9999 | 0.9998 |
Beach-4 | 0.9969 | 0.9910 | 0.9687 | 0.9505 | 0.9551 |
Urban-1 | 0.9992 | 0.9986 | 0.9923 | 0.9835 | 0.9567 |
Urban-2 | 0.9990 | 0.9985 | 0.9943 | 0.9908 | 0.9863 |
Urban-3 | 0.9999 | 0.9880 | 0.9429 | 0.9363 | 0.7905 |
Urban-4 | 0.9899 | 0.9881 | 0.9775 | 0.9746 | 0.9464 |
Urban-5 | 0.9856 | 0.9688 | 0.9547 | 0.9307 | 0.8628 |
AVIRIS-1 | 0.9983 | 0.9979 | 0.9968 | 0.9976 | 0.9974 |
AVIRIS-2 | 0.9895 | 0.9729 | 0.8778 | 0.9173 | 0.9438 |
Images | WD | BD | KL |
---|---|---|---|
Airport-1 | 0.9404 | 0.5335 | 0.4939 |
Airport-2 | 0.8975 | 0.5719 | 0.5486 |
Airport-3 | 0.9052 | 0.5852 | 0.5773 |
Airport-4 | 0.9334 | 0.4117 | 0.7541 |
Beach-1 | 0.9322 | 0.9176 | 0.5610 |
Beach-2 | 0.8462 | 0.5037 | 0.4887 |
Beach-3 | 0.9963 | 0.4125 | 0.8923 |
Beach-4 | 0.9502 | 0.4286 | 0.3275 |
Urban-1 | 0.9356 | 0.4399 | 0.3778 |
Urban-2 | 0.9694 | 0.6442 | 0.6248 |
Urban-3 | 0.9568 | 0.7677 | 0.5079 |
Urban-4 | 0.9605 | 0.4716 | 0.4688 |
Urban-5 | 0.8636 | 0.4181 | 0.4724 |
AVIRIS-1 | 0.9685 | 0.6778 | 0.5446 |
AVIRIS-2 | 0.7981 | 0.5674 | 0.4679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Wen, M.; Gao, C.; Wang, Y. Hyperspectral Anomaly Detection Based on Wasserstein Distance and Spatial Filtering. Remote Sens. 2022, 14, 2730. https://doi.org/10.3390/rs14122730
Cheng X, Wen M, Gao C, Wang Y. Hyperspectral Anomaly Detection Based on Wasserstein Distance and Spatial Filtering. Remote Sensing. 2022; 14(12):2730. https://doi.org/10.3390/rs14122730
Chicago/Turabian StyleCheng, Xiaoyu, Maoxing Wen, Cong Gao, and Yueming Wang. 2022. "Hyperspectral Anomaly Detection Based on Wasserstein Distance and Spatial Filtering" Remote Sensing 14, no. 12: 2730. https://doi.org/10.3390/rs14122730
APA StyleCheng, X., Wen, M., Gao, C., & Wang, Y. (2022). Hyperspectral Anomaly Detection Based on Wasserstein Distance and Spatial Filtering. Remote Sensing, 14(12), 2730. https://doi.org/10.3390/rs14122730