Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta
Abstract
:1. Introduction
2. Geographic Background
2.1. Study Area
2.2. Meteorological Data of Hurricane Ida and Zeta
3. Methods and Materials
3.1. Remote Sensing
3.2. Spatial-Temporal Analysis
4. Results
4.1. Beach Barrier Dynamics between 2019 and 2021
4.2. Spatial-Temporal Analysis of the Beach Barrier between 2002 and 2021
5. Discussion
5.1. Shoreline Dynamics at Bay CHAMPAGNE Prior to Hurricanes Ida and Zeta
5.2. Hurricane Effects on Beach Barrier Dynamics
5.3. Implications for Future Coastal Restoration Efforts
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Blake, E.S.; Landsea, C.; Gibney, E.J. The Deadliest, Costliest, and Most Intense United States Tropical Cyclones from 1851 to 2010 (and Other Frequently Requested Hurricane Facts). Available online: https://repository.library.noaa.gov/view/noaa/6929 (accessed on 27 April 2022).
- National Oceanic and Atmospheric Administration (NOAA); National Hurricane Center. Hurricane IDA Advisory Archive. Available online: https://www.nhc.noaa.gov/archive/2021/IDA.shtml? (accessed on 20 October 2021).
- National Oceanic and Atmospheric (NOAA). Historical Hurricane Tracks. Available online: https://coast.noaa.gov/hurricanes/#map=4/32/-80 (accessed on 28 October 2021).
- Yao, Q.; Liu, K.-B.; Ryu, J. Multi-proxy Characterization of Hurricanes Rita and Ike Storm Deposits in the Rockefeller Wildlife Refuge, Southwestern Louisiana. J. Coast. Res. 2018, 85, 841–845. [Google Scholar] [CrossRef]
- Cohen, M.; de Souza, A.; Liu, K.-B.; Rodrigues, E.; Yao, Q.; Pessenda, L.; Rossetti, D.; Ryu, J.; Dietz, M. Effects of Beach Nourishment Project on Coastal Geomorphology and Mangrove Dynamics in Southern Louisiana, USA. Remote Sens. 2021, 13, 2688. [Google Scholar] [CrossRef]
- Cohen, M.C.; de Souza, A.V.; Liu, K.-B.; Rodrigues, E.; Yao, Q.; Ryu, J.; Dietz, M.; Pessenda, L.C.; Rossetti, D. Effects of the 2017–2018 winter freeze on the northern limit of the American mangroves, Mississippi River delta plain. Geomorphology 2021, 394, 107968. [Google Scholar] [CrossRef]
- Jankowski, K.L.; Törnqvist, T.E.; Fernandes, A.M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 2017, 8, 14792. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric (NOAA). Tides and Currents. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8761724 (accessed on 18 October 2021).
- Zou, L.; Kent, J.; Lam, N.S.-N.; Cai, H.; Qiang, Y.; Li, K. Evaluating Land Subsidence Rates and Their Implications for Land Loss in the Lower Mississippi River Basin. Water 2015, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.M.; Roberts, H.H.; Stone, G.W. Mississippi river delta: An overview. J. Coast. Res. 1998, 14, 698–716. [Google Scholar]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Cheng, W.; Zou, L.; Cai, H. Effects of landscape fragmentation on land loss. Remote Sens. Environ. 2018, 209, 253–262. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.J.; Guo, L.; Lam, N.S.-N.; Xu, K.; Yang, S.; Yao, Q.; Liu, K.-B. Comparing the Yangtze and Mississippi River Deltas in the light of coupled natural-human dynamics: Lessons learned and implications for management. Geomorphology 2021, 399, 108075. [Google Scholar] [CrossRef]
- Penland, S.; Zganjar, C.; Westphal, K.A.; Connor, P.; List, J.; Williams, S.J. Shoreline Changes in the Caminada-Moreau Headland and Grand Isle—1887 to 1996 Lafourche and Jefferson Parishes, Louisiana; United States Geological Survey: Lafayette, LA, USA, 2003.
- Dietz, M.E.; Liu, K.-B.; Bianchette, T.A. Hurricanes as a Major Driver of Coastal Erosion in the Mississippi River Delta: A Multi-Decadal Analysis of Shoreline Retreat Rates at Bay Champagne, Louisiana (USA). Water 2018, 10, 1480. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.H. Dynamic Changes of the Holocene Mississippi River Delta Plain: The Delta Cycle. J. Coast. Res. 1997, 13, 605–627. [Google Scholar]
- Kolb, C.R.; van Lopik, J.R. Geology of the Mississippi River Deltaic Plain, Southeastern Louisiana: US Army Corps of Engineers; Technical Report 2; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MI, USA, 1958. [Google Scholar]
- Reed, D.J.; Wilson, L. Coast 2050: A New Approach to Restoration of Louisiana Coastal Wetlands. Phys. Geogr. 2004, 25, 4–21. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016); Technical Report No. 3381; US Geological Survey: Lafayette, LA, USA, 2017. [CrossRef] [Green Version]
- Coastal Protection and Restoration Authority. Louisiana’s Comprehensive Master Plan for a Sustainable Coast; CPRA: Baton Rouge, LA, USA, 2017. [Google Scholar]
- Li, B.; Sherman, D.J. Aerodynamics and morphodynamics of sand fences: A review. Aeolian Res. 2015, 17, 33–48. [Google Scholar] [CrossRef]
- Bennett, R.; Chavarria, A. BA-171 Caminada Headland Back Barrier Marsh Creation Project. Available online: https://mississippiriverdelta.org//files/2017/03/CWPPRA-Caminada-headlands-back-barrier-marshrestoration.pdf (accessed on 19 April 2022).
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Williams, S.J.; Penland, S.; Sallenger, J.A.H. Atlas of Shoreline Changes from 1853 to 1989: Louisiana Barrier Island Erosion Study; Technical Report No. 2150-A; United States Geological Survey: Baton Rouge, LA, USA, 1992. [CrossRef]
- Byrnes, M.R.; Britsch, L.D.; Berlinghoff, J.L.; Johnson, R.; Khalil, S. Recent subsidence rates for Barataria Basin, Louisiana. Geo-Mar. Lett. 2019, 39, 265–278. [Google Scholar] [CrossRef]
- Dietz, M.E.; Liu, K.-B.; Bianchette, T.A.; Ryu, J.; Yao, Q. Linking backbarrier lacustrine stratigraphy with spatial dynamics of shoreline retreat in a rapidly subsiding region of the Mississippi River Delta. Geomorphology 2021, 397, 108008. [Google Scholar] [CrossRef]
- Liu, K.; Li, C.; Bianchette, T.; McCloskey, T.; Yao, Q.; Weeks, E.; Furmanczyk, K.; Giza, A.; Terefenko, P. Storm deposition in a coastal backbarrier lake in Louisiana caused by Hurricanes Gustav and Ike. J. Coast. Res. 2011, 64, 1866–1870. [Google Scholar] [CrossRef]
- Dietz, M.E.; Liu, K.-B.; Bianchette, T.A.; Smith, D. Differentiating hurricane deposits in coastal sedimentary records: Two storms, one layer, but different processes. Environ. Res. Commun. 2021, 3, 101001. [Google Scholar] [CrossRef]
- Blake, E.; Berg, R.; Hagen, A. Hurricane Zeta; Tropical Cyclone Report; National Hurricane Center: Miami, FL, USA, 2021.
- Global Mapper User’s Manual. Available online: https://www.globalmapper.it/helpv11/Help_Main.html (accessed on 9 April 2022).
- Harper, J. Sediment Dispersal Trends of the Caminada-Moreau Beach-Ridge System. Gulf Coast Assoc. Geol. Soc. Trans. 1977, 27, 283–289. [Google Scholar]
- Penland, S.; Ritchie, W. Short Term Morphological Changes along the Caminada-Moreau Coast, Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 1979, 29, 342–346. [Google Scholar]
- DeWitt, N.T.; Flocks, J.G.; Hansen, M.; Kulp, M.; Reynolds, B. Bathymetric Survey of the Nearshore from Belle Pass to Caminada Pass, Louisiana: Methods and Data Report; Data Series 312; US Geological Survey: Lafayette, LA, USA, 2007. [CrossRef]
- Penland, S.; Suter, J.R.; Moslow, T.F. Inner-Shelf Shoal Sedimentary Facies and Sequences: Ship Shoal, Northern Gulf of Mexico; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1986. [Google Scholar]
- McBride, R.A.; Byrnes, M.R. Regional Variations in Shore Response along Barrier Island Systems of the Mississippi River Delta Plain: Historical Change and Future Prediction. J. Coast. Res. 1997, 13, 628–655. [Google Scholar]
- Henry, K.M.; Twilley, R.R. Soil Development in a Coastal Louisiana Wetland during a Climate-Induced Vegetation Shift from Salt Marsh to Mangrove. J. Coast. Res. 2013, 29, 1273. [Google Scholar] [CrossRef]
- Day, J.W., Jr.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science (1979) 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Naquin, J.D.; Liu, K.-B.; McCloskey, T.A.; Bianchette, T.A. Storm deposition induced by hurricanes in a rapidly subsiding coastal zone. J. Coast. Res. 2014, 70, 308–313. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kara, A.B.; Owens, M.A. Fluctuations in North Atlantic Hurricane Frequency. J. Clim. 1999, 12, 427–437. [Google Scholar] [CrossRef]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science (1979) 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Woodruff, J.D.; Donnelly, J.P.; Zhang, Z. Atlantic hurricanes and climate over the past 1500 years. Nature 2009, 460, 880–883. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, K.; Rodrigues, E.; Bianchette, T.; Aragón-Moreno, A.A.; Zhang, Z. A Geochemical Record of Late-Holocene Hurricane Events From the Florida Everglades. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Johnson, C.L.; Chen, Q.; Ozdemir, C.E. Lidar time-series analysis of a rapidly transgressing low-lying mainland barrier (Caminada Headlands, LA, USA). Geomorphology 2019, 352, 106979. [Google Scholar] [CrossRef]
- Xu, Y.J. Rethinking the Mississippi River diversion for effective capture of riverine sediments. Proc. Int. Assoc. Hydrol. Sci. 2015, 367, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Bass, A.S.; Turner, R.E. Relationships between Salt Marsh Loss and Dredged Canals in Three Louisiana Estuaries. Coast. Res. 1997, 13, 895–903. [Google Scholar]
- Ko, J.-Y.; Day, J.W. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean Coast. Manag. 2004, 47, 597–623. [Google Scholar] [CrossRef]
- Keown, M.P.; Dardeau, E.A.; Causey, E.M. Historic Trends in the Sediment Flow Regime of the Mississippi River. Water Resour. Res. 1986, 22, 1555–1564. [Google Scholar] [CrossRef]
- Kesel, R.H. The decline in the suspended load of the Lower Mississippi River and its influence on adjacent wetlands. Environ. Earth Sci. 1988, 11, 271–281. [Google Scholar] [CrossRef]
- Maloney, J.M.; Bentley, S.; Xu, K.; Obelcz, J.; Georgiou, I.Y.; Miner, M.D. Mississippi River subaqueous delta is entering a stage of retrogradation. Mar. Geol. 2018, 400, 12–23. [Google Scholar] [CrossRef]
- Meade, R.H.; Moody, J.A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007. Hydrol. Process. 2009, 24, 35–49. [Google Scholar] [CrossRef]
- Liu, K.-B. Paleotempestology: Geographic Solutions to Hurricane Hazard Assessment and Risk Prediction. In WorldMinds: Geographical Perspectives on 100 Problems; Springer: Dordrecht, The Netherlands, 2004; pp. 443–448. [Google Scholar] [CrossRef]
- Osland, M.J.; Day, R.H.; Hall, C.T.; Brumfield, M.D.; Dugas, J.L.; Jones, W.R. Mangrove expansion and contraction at a poleward range limit: Climate extremes and land-ocean temperature gradients. Ecology 2016, 98, 125–137. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Anderson, G.H.; Vervaeke, W.C.; Krauss, K.W.; Whelan, K.R.; Balentine, K.M.; Tiling-Range, G.; Smith, T.J.; Cahoon, D.R. A Tropical Cyclone-Induced Ecological Regime Shift: Mangrove Forest Conversion to Mudflat in Everglades National Park (Florida, USA). Wetlands 2020, 40, 1445–1458. [Google Scholar] [CrossRef]
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A.; et al. Coastal Ecosystem-Based Management with Nonlinear Ecological Functions and Values. Science (1979) 2008, 319, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Anthony, E.J.; Gratiot, N. Coastal engineering and large-scale mangrove destruction in Guyana, South America: Averting an environmental catastrophe in the making. Ecol. Eng. 2012, 47, 268–273. [Google Scholar] [CrossRef]
- Phan, L.K.; van Thiel de Vries, J.S.M.; Stive, M.J.F. Coastal Mangrove Squeeze in the Mekong Delta. J. Coast. Res. 2015, 300, 233–243. [Google Scholar] [CrossRef]
- Michot, T.C.; Day, R.H.; Wells, C.J. Increase in Black Mangrove Abundance in Coastal Louisiana. Louisiana Natural Resources News, 27 February 2010; pp. 4–5. [Google Scholar]
- Yao, Q.; Cohen, M.C.L.; Liu, K.B.; Fan, D.D.; Rodrigues, E.; Maiti, K.; de Souza, A.V.; Aragón-Moreno, A.A.; Rohli, R.; Yin, D.X.; et al. Mangrove Expansion at Poleward Range Limits in North and South America: Late-Holocene Climate Variability or Anthropocene Global Warming? Catena, 2022; in press. [Google Scholar]
- Madison, M.J.; Mack, S.K.; Lane, R.R.; Day, J.W. Wetland Restoration Using Mangroves in Southern Louisiana. In Proceedings of the SPE Americas E&P Health, Safety, Security and Environmental Conference, Galveston, TX, USA, 18–20 March 2013. [Google Scholar] [CrossRef]
GCP | X/Longitude | Y/Latitude | Z/Elevation (m) | XDIF | YDIF | ZDIF |
---|---|---|---|---|---|---|
1 | −90.169318 | 29.117012 | 0.78 | −0.014713 | 0.000967 | 0.04 |
2 | −90.166061 | 29.119106 | 0.72 | 0.004428 | 0.004298 | 0.01 |
3 | −90.167760 | 29.117485 | 0.45 | −0.003994 | 0.000603 | 0.04 |
4 | −90.154767 | 29.127904 | 0 | 0.066736 | 0.03 | 0.13 |
5 | −90.154317 | 29.127531 | 0.45 | 0.088765 | 0.02 | 0.10 |
6 | −90.153269 | 29.126278 | 0 | 0.088842 | 0.003677 | 0.038 |
7 | −90.157144 | 29.124695 | 1.13 | 0.065826 | 0.009959 | 0.03 |
8 | −90.166814 | 29.119035 | 0.6 | 0.034 | 0.303264 | 0.09 |
9 | −90.164600 | 29.120375 | 1.18 | 0.018295 | 0.006667 | 0.03 |
10 | −90.161136 | 29.122167 | 1.03 | 0.039914 | 0.006835 | 0.03 |
11 | −90.168978 | 29.118352 | 0.27 | −0.008730 | 0.008301 | 0.03 |
12 | −90.168500 | 29.118745 | 0.21 | −0.005413 | 0.009216 | 0.03 |
13 | −90.168125 | 29.117093 | 0.20 | −0.008472 | −0.000703 | 0.02 |
14 | −90.170295 | 29.117766 | 0.3 | 0.014279 | −0.005867 | −0.01 |
15 | −90.171358 | 29.115810 | 1.0 | 0.002286 | 0.003633 | −0.02 |
16 | −90.172034 | 29.116723 | 0.61 | 0.003032 | 0.004055 | 0.003 |
17 | −90.170875 | 29.115429 | 0.26 | −0.000194 | 0.005523 | −0.001 |
18 | −90.173615 | 29.114195 | 0.75 | 0.002720 | 0.011527 | −0.04 |
19 | −90.176311 | 29.112635 | 0.78 | 0.006339 | 0.016190 | 0.003 |
20 | −90.173905 | 29.115531 | 0.87 | −0.022920 | −0.040214 | −0.002 |
21 | −90.178845 | 29.110735 | 1.15 | 0.042 | 0.046 | −0.02 |
22 | −90.181842 | 29.108411 | 0.78 | −0.636392 | 0.054 | −0.04 |
23 | −90.181485 | 29.108824 | 0.54 | 0.19 | 0.053 | 0.02 |
24 | −90.169279 | 29.117025 | 0.78 | 0.008734 | −0.000714 | 0.03 |
25 | −90.176196 | 29.114711 | 0 | −0.000529 | −0.003827 | 0.05 |
26 | −90.181666 | 29.109986 | 0 | 0.001820 | −0.002098 | 0.08 |
27 | −90.182765 | 29.111802 | 0 | −0.006467 | −0.008261 | 0.07 |
28 | −90.182708 | 29.111594 | 0 | 0.005128 | 0.006270 | 0.03 |
29 | −90.180144 | 29.111834 | 0.78 | −0.130523 | −0.783544 | 0.05 |
30 | −90.181499 | 29.109870 | 0.58 | 0.769515 | −0.681291 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q.; Cohen, M.C.L.; Liu, K.-b.; de Souza, A.V.; Rodrigues, E. Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta. Remote Sens. 2022, 14, 2598. https://doi.org/10.3390/rs14112598
Yao Q, Cohen MCL, Liu K-b, de Souza AV, Rodrigues E. Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta. Remote Sensing. 2022; 14(11):2598. https://doi.org/10.3390/rs14112598
Chicago/Turabian StyleYao, Qiang, Marcelo Cancela Lisboa Cohen, Kam-biu Liu, Adriana Vivan de Souza, and Erika Rodrigues. 2022. "Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta" Remote Sensing 14, no. 11: 2598. https://doi.org/10.3390/rs14112598
APA StyleYao, Q., Cohen, M. C. L., Liu, K. -b., de Souza, A. V., & Rodrigues, E. (2022). Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta. Remote Sensing, 14(11), 2598. https://doi.org/10.3390/rs14112598