Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery
Abstract
:1. Introduction
Monitoring the Effects of Human Activities on the Natural Environment
2. Materials and Methods
2.1. Sentinel-2 Data
2.2. A Convolutional Neural Network for Land Cover Detection
2.3. Tracking Land Cover Changes
- Obtain a multi-spectral (MS) image from Sentinel-2 for a desired rectangular polygon of any specific size;
- Pad the border of the MS image by mirroring 32 pixels along each border;
- Slide a 64 × 64 pixel window over the padded image, with a single-pixel step to generate the classification for all the pixels of the original image.
3. Experiments and Results
3.1. Land Cover Change Analysis
3.2. Analysing LC Changes a Region in Central China
4. Discussion
4.1. The Effect of Transport Infrastructure on Land Use
4.2. Deep Learning for Remote Sensing
4.3. Limitations of the Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yigitcanlar, T.; Kamruzzaman, M. Investigating the interplay between transport, land use and the environment: A review of the literature. Int. J. Environ. Sci. Technol. 2014, 11, 2121–2132. [Google Scholar] [CrossRef] [Green Version]
- Kasraian, D.; Maat, K.; Stead, D.; van Wee, B. Long-term impacts of transport infrastructure networks on land-use change: An international review of empirical studies. Transp. Rev. 2016, 36, 772–792. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, Y.; Haynes, K.E. Change in land use structure in urban China: Does the development of high-speed rail make a difference. Land Use Policy 2021, 111, 104962. [Google Scholar] [CrossRef]
- Pettorelli, N.; Schulte to Bühne, H.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.M.; Keith, D.A.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Meehl, G.A.; Bony, S.; Easterling, D.R. Climate data challenges in the 21st century. Science 2011, 331, 700–702. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A review of remote sensing for environmental monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Wegener, M.; Fürst, F. Land-Use Transport Interaction: State of the Art. SSRN 1434678. 2004. Available online: https://www.researchgate.net/profile/Michael-Wegener-3/publication/302570069_Land-Use_Transport_Interaction/links/57dfd86e08ae5272afd0986c/Land-Use-Transport-Interaction.pdf (accessed on 4 May 2022).
- Bertolini, L. Integrating mobility and urban development agendas: A manifesto. disP—Plan. Rev. 2012, 48, 16–26. [Google Scholar] [CrossRef] [Green Version]
- World Bank Group. Belt and Road Initiative. 2022. Available online: https://www.worldbank.org/en/topic/regional-integration/brief/belt-and-road-initiative (accessed on 4 May 2022).
- Zhao, L.; Cheng, Z.; Li, H.; Hu, Q. Evolution of the China Railway Express consolidation network and optimization of consolidation routes. J. Adv. Transp. 2019, 2019, 9536273. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S. The Current Status and Challenges of China Railway Express (CRE) as a Key Sustainability Policy Component of the Belt and Road Initiative. Sustainability 2021, 13, 5017. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. Object detection and image segmentation with deep learning on earth observation data: A review-part I: Evolution and recent trends. Remote Sens. 2020, 12, 1667. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Leitloff, J.; Riese, F.M. Examples for CNN Training and Classification on Sentinel-2 Data; Zenodo: Geneve, Switzerland, 2018. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef] [Green Version]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Akgüngör, S.; Aldemir, C.; Kuştepeli, Y.; Gülcan, Y.; Tecim, V. The Effect of railway expansion on population in Turkey, 1856–2000. J. Interdiscip. Hist. 2011, 42, 135–157. [Google Scholar] [CrossRef]
- Beyzatlar, M.A.; Kustepeli, Y.R. Infrastructure, economic growth and population density in Turkey. Int. J. Econ. Sci. Appl. Res. 2011, 4, 39–57. [Google Scholar]
- Da Silveira, L.E.; Alves, D.; Lima, N.M.; Alcântara, A.; Puig, J. Population and railways in Portugal, 1801–1930. J. Interdiscip. Hist. 2011, 42, 29–52. [Google Scholar] [CrossRef]
- Schwartz, R.; Gregory, I.; Thévenin, T. Spatial history: Railways, uneven development, and population change in France and Great Britain, 1850–1914. J. Interdiscip. Hist. 2011, 42, 53–88. [Google Scholar] [CrossRef]
- Kotavaara, O.; Antikainen, H.; Rusanen, J. Urbanization and transportation in Finland, 1880–1970. J. Interdiscip. Hist. 2011, 42, 89–109. [Google Scholar] [CrossRef]
- Kotavaara, O.; Antikainen, H.; Rusanen, J. Population change and accessibility by road and rail networks: GIS and statistical approach to Finland 1970–2007. J. Transp. Geogr. 2011, 19, 926–935. [Google Scholar] [CrossRef]
- Wu, F.; Yeh, A.G.O. Changing spatial distribution and determinants of land development in Chinese cities in the transition from a centrally planned economy to a socialist market economy: A case study of Guangzhou. Urban Stud. 1997, 34, 1851–1879. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Y.D. Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. [Google Scholar] [CrossRef]
- Doll, C.; Brauer, C.; Köhler, J.; Scholten, P. Methodology for GHG Efficiency of Transport Modes; CE Delf: Karlsruhe, Germany, 2020. [Google Scholar]
- Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.; et al. PaLM: Scaling Language Modeling with Pathways. arXiv 2022, arXiv:2204.02311. [Google Scholar]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Yu, L.; Gong, P.; Feng, D.; Li, C.; Clinton, N. Stacked Autoencoder-based deep learning for remote-sensing image classification: A case study of African land-cover mapping. Int. J. Remote Sens. 2016, 37, 5632–5646. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Yan, Z.; Tomizuka, M.; Gonzalez, J.; Keutzer, K.; Vajda, P. Visual transformers: Token-based image representation and processing for computer vision. arXiv 2020, arXiv:2006.03677. [Google Scholar]
- Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 2018, 140, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wei, S.; Ji, S.; Lu, M. Detecting large-scale urban land cover changes from very high resolution remote sensing images using CNN-based classification. ISPRS Int. J. Geo-Inf. 2019, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Huo, L.; Hu, C.; Tang, P. Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation. Remote Sens. 2020, 12, 2001. [Google Scholar] [CrossRef]
Band Tag | Band Name | Spatial Resolution [m] |
---|---|---|
B01 | Aerosols | 60 |
B02 | Blue | 10 |
B03 | Green | 10 |
B04 | Red | 10 |
B05 | Red edge 1 | 20 |
B06 | Red edge 2 | 20 |
B07 | Red edge 3 | 20 |
B08 | NIR | 10 |
B08a | Red edge 4 | 20 |
B09 | Water vapor | 60 |
B010 | Cirrus | 60 |
B011 | SWIR 1 | 20 |
B012 | SWIR 2 | 20 |
LC Classes Coding and Color Representation | |||
---|---|---|---|
Class | Code | Hex Color | Color Patch |
Annual Crop | 0 | #ffe64d | |
Forest | 1 | #00a600 | |
Herbaceous Vegetation | 2 | #a6e64d | |
Highway | 3 | #cc0000 | |
Industrial | 4 | #cc4df2 | |
Pasture | 5 | #e6e64d | |
Permanent Crop | 6 | #ffe6a6 | |
Residential | 7 | #a64d00 | |
River | 8 | #00ccf2 | |
Sea-Lake | 9 | #e6f2ff |
LC Classes Representation | ||
---|---|---|
Class | Ground Truth | Inferred |
Annual Crop | 38.1% | 34.0% |
Forest | 24.0% | 7.7% |
Herbaceous Vegetation | 4.6% | 7.8% |
Highway | 0.05% | 13.7% |
Industrial | 6.7% | 7.8% |
Pasture | 13.1% | 4.4% |
Permanent Crop | 0.0% | 6.5% |
Residential | 11.1% | 11.8% |
River | 1.6% | 6.2% |
Sea-Lake | 0.0% | 0.5% |
Average Frequency of LC Classes Per Year | |||
---|---|---|---|
Class | 2019 | 2020 | 2021 |
Annual Crop | 36.79% | 35.61% | 33.65% |
Industrial | 5.97% | 6.29% | 4.56% |
Residential | 7.62% | 8.61% | 7.94% |
Average Yearly % for LC Classes | |||
---|---|---|---|
Class | 2019 | 2020 | 2021 |
Annual Crop | 17.21% | 12.22% | 11.47% |
Industrial | 5.71% | 3.65% | 5.87% |
Residential | 5.86% | 6.03% | 7.16% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlovic, M.; Ilic, S.; Antonic, N.; Culibrk, D. Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery. Remote Sens. 2022, 14, 2494. https://doi.org/10.3390/rs14102494
Pavlovic M, Ilic S, Antonic N, Culibrk D. Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery. Remote Sensing. 2022; 14(10):2494. https://doi.org/10.3390/rs14102494
Chicago/Turabian StylePavlovic, Marko, Slobodan Ilic, Nenad Antonic, and Dubravko Culibrk. 2022. "Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery" Remote Sensing 14, no. 10: 2494. https://doi.org/10.3390/rs14102494
APA StylePavlovic, M., Ilic, S., Antonic, N., & Culibrk, D. (2022). Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery. Remote Sensing, 14(10), 2494. https://doi.org/10.3390/rs14102494