Development and Evaluation of a Real-Time Hourly One-Kilometre Gridded Multisource Fusion Air Temperature Dataset in China Based on Remote Sensing DEM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. Model Background Field
2.1.2. In-Site Observations
2.1.3. Remote Sensing DEM
2.2. Data Processing
2.3. Fusion Method
2.4. Algorithms for Evaluation
3. Results
3.1. Spatial Distribution Characteristics in Different Seasons
3.2. Evaluation on the Site-Scale
3.2.1. RMSE Analysis
3.2.2. COR Analysis
3.2.3. BIAS Analysis
3.3. Evaluation for Time Series
3.4. Evaluation in Different Climatic Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Huang, G.; Li, Y.; Lin, Q.; Yan, D.; He, X. Dynamical Downscaling of Temperature Variations over the Canadian Prairie Provinces under Climate Change. Remote Sens. 2021, 13, 4350. [Google Scholar] [CrossRef]
- Lu, C.; Huang, G.; Wang, G.; Zhang, J.; Wang, X.; Song, T. Long-Term Projection of Water Cycle Changes over China Using RegCM. Remote Sens. 2021, 13, 3832. [Google Scholar] [CrossRef]
- Han, S.; Liu, B.; Shi, C.; Liu, Y.; Qiu, M.; Sun, S. Evaluation of CLDAS and GLDAS Datasets for Near-Surface Air Temperature over Major Land Areas of China. Sustainability 2020, 12, 4311. [Google Scholar] [CrossRef]
- Han, S.; Shi, C.; Xu, B.; Sun, S.; Zhang, T.; Jiang, L.; Liang, X. Development and evaluation of hourly and kilometer resolution retrospective and real-time surface meteorological blended forcing dataset (SMBFD) in China. J. Meteor. Res. 2019, 33, 1168–1181. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Shi, C. Multiscale Assessments of Three Reanalysis Temperature Data Systems over China. Agriculture 2021, 11, 1292. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, S.; Shi, C.; Gao, T.; Zhen, H.; Liu, X. Evaluation of HRCLDAS and ERA5 Datasets for Near-Surface Wind over Hainan Island and South China Sea. Atmosphere 2021, 12, 766. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Ji, C.; Li, Y.; Deng, F.; Dong, M. Establishment and assessment of hourly high-resolution gridded air temperature data sets in Zhejiang, China. Meteorol. Appl. 2019, 26, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Senay, G.B.; Verdin, J.P. Evaluation of the Global Land Data Assimilation System (GLDAS) Air Temperature Data Products. J. Hydrometeorol. 2015, 16, 2463–3480. [Google Scholar] [CrossRef]
- De Pondeca, M.S.F.V.; Manikin, G.S.; DiMego, G.; Benjamin, S.G.; Parrish, D.F.; Purser, R.J.; Wu, W.-S.; Horel, J.D.; Myrick, D.T.; Lin, Y.; et al. The Real-Time Mesoscale Analysis at NOAA’s National Centers for Environmental Prediction: Current Status and Development. Weather Forecast. 2011, 26, 593–612. [Google Scholar] [CrossRef]
- Ancell, B.C.; Mass, C.F.; Cook, K.; Colman, B. Comparison of Surface Wind and Temperature Analyses from an Ensemble Kalman Filter and the NWS Real-Time Mesoscale Analysis System. Weather Forecast. 2014, 29, 1058–1075. [Google Scholar] [CrossRef]
- Zhang, M.; De Leon, C.; Migliaccio, K. Evaluation and comparison of interpolated gauge rainfall data and gridded rainfall data in Florida, USA. Hydrol. Sci. J. 2018, 63, 561–582. [Google Scholar] [CrossRef]
- Haiden, T.; Kann, A.; Wittmann, C.; Pistotnik, G.; Bica, B.; Gruber, C. The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region. Weather Forecast. 2011, 26, 166–183. [Google Scholar] [CrossRef]
- Kann, A.; Haiden, T.; Von Der Emde, K.; Gruber, C.; Kabas, T.; Leuprecht, A.; Kirchengast, G. Verification of Operational Analyses Using an Extremely High-Density Surface Station Network. Weather Forecast. 2011, 26, 572–578. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Goteti, G.; Wood, E. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E. Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Yang, J.; Chen, H.; Liu, J.; Ji, Q.; Wang, Y.; Tang, F. Evaluation of Extreme Precipitation Based on Three Long-Term Gridded Products over the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3010. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, L.; Shen, Y.; Zhang, Y.; Ai, M.; Zhang, W. Modeling Snow Depth and Snow Water Equivalent Distribution and Variation Characteristics in the Irtysh River Basin, China. Appl. Sci. 2021, 11, 8365. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, Z.; Shi, C.; Li, Y.; Meng, J.; Xu, T.; Wu, X.; Zhang, B. Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects. J. Meteorol. Res. 2019, 33, 159–189. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Zaitchik, B.F.; Rodell, M.; Olivera, F. Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.V.; Jasinski, M.; Mocko, D.M.; Rodell, M.; Borak, J.; Li, B.; Kato Beaudoing, H.; Peters-Lidard, C. NCA-LDAS Land Analysis: Development and Performance of a Multisensor, Multivariate Land Data Assimilation System for the National Climate Assessment. J. Hydrometeorol. 2019, 20, 1571–1593. [Google Scholar] [CrossRef]
- Chen, F.; Manning, W.J.; LeMone, M.A.; Trier, S.B.; Alfieri, J.G.; Roberts, R.; Tewari, M.; Niyogi, D.; Horst, T.W.; Oncley, S.P.; et al. Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System. J. Appl. Meteorol. Clim. 2007, 46, 694–713. [Google Scholar] [CrossRef] [Green Version]
- Aparecido, L.E.D.O.; Rolim, G.D.S.; Moraes, J.R.D.S.C.D. Validation of ECMWF climatic data, 1979–2017, and implications for modelling water balance for tropical climates. Int. J. Clim. 2020, 40, 6646–6665. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Heise, S.; Liou, Y.-A.; Zhu, W.; Zhao, J. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China. GPS Solutions 2011, 15, 415–425. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Pratap, V.; Singh, A.K. Performance of water vapour retrieval from MODIS and ECMWF and their validation with ground based GPS measurements over Varanasi. J. Earth Syst. Sci. 2021, 130, 41. [Google Scholar] [CrossRef]
- Hirano, A.; Sun, X.; Sato, S. Shuttle Radar Topography Mission (SRTM) Data for Africa. J. Afr. Stud. 2004, 2004, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Koch, S.; McGinley, J.; Albers, S.; Bieringer, P.E.; Wolfson, M.; Chan, M. A Space–Time Multiscale Analysis System: A Sequential Variational Analysis Approach. Mon. Weather. Rev. 2011, 139, 1224–1240. [Google Scholar] [CrossRef]
- Courtier, P.; Talagrand, O. Variational assimilation of meteorological observations with the adjoint vorticity equation. Part II. Numerical results. Quart. J. Roy. Meteor. Soc. 1987, 113, 1329–1347. [Google Scholar] [CrossRef]
- Zhang, T.; Miao, C.S.; Wang, X. Comparison Tests of the Integration Effect of SurfaceTemperature by LAPS and STMAS. Plateau Meteorol. 2014, 33, 743–752. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Wang, L.; She, J.; Zhu, L.; Li, X. Long-Term Lake Area Change and Its Relationship with Climate in the Endorheic Basins of the Tibetan Plateau. Remote Sens. 2021, 13, 5125. [Google Scholar] [CrossRef]
- Fernandez-Cortes, A.; Calaforra, J.; Jimenez-Espinosa, R.; Sánchez-Martos, F. Geostatistical spatiotemporal analysis of air temperature as an aid to delineating thermal stability zones in a potential show cave: Implications for environmental management. J. Environ. Manag. 2006, 81, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Kawashima, S.; Ishida, T. Effects of regional temperature, wind speed and soil wetness on spatial structure of surface air temperature. Theor. Appl. Climatol. 1992, 46, 153–161. [Google Scholar] [CrossRef]
- Triki, I.; Trabelsi, N.; Hentati, I.; Zairi, M. Groundwater levels time series sensitivity to pluviometry and air temperature: A geostatistical approach to Sfax region, Tunisia. Environ. Monit. Assess. 2014, 186, 1593–1608. [Google Scholar] [CrossRef]
- Sapounas, A.A.; Nikita-Martzopoulou, C.; Spiridis, A. Prediction the Spatial Air Temperature Distribution of an Experimental Greenhouse Using Geostatistical Methods. Acta Hortic. 2008, 801, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Orellana-Samaniego, M.L.; Ballari, D.; Guzman, P.; Ospina, J.E. Estimating monthly air temperature using remote sensing on a region with highly variable topography and scarce monitoring in the southern Ecuadorian Andes. Theor. Appl. Climatol. 2021, 144, 949–966. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Jiang, Y. Evaluation of a Convection-Permitting Modeling of Precipitation over the Tibetan Plateau and Its Influences on the Simulation of Snow-Cover Fraction. J. Hydrometeorol. 2020, 21, 1531–1548. [Google Scholar] [CrossRef]
- Schaumberger, A.; Scheifinger, H.; Formayer, H. Improvement of air temperature interpolation in mountainous regions for grassland-specific analysis of growth dynamics[C]//16th Symposium of the European Grassland Federation. In Grassland Farming and Land Management Systems in Mountainous Regions; Blackwell Publishing Ltd.: Hoboke, NJ, USA, 2011. [Google Scholar]
- Peng, B.; Zhou, Y.; Gao, P.; Ju, W. Suitability Assessment of Different Interpolation Methods in the Gridding Process of Station Collected Air Temperature: A Case Study in Jiangsu Province, China. J. Geo-Inf. Sci. 2011, 13, 539–548. [Google Scholar] [CrossRef]
- Nassehi, V.; Parvazinia, M. A multiscale finite element space-time discretization method for transient transport phenomena using bubble functions. Finite Elements Anal. Des. 2009, 45, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Nouy, A.; Ladeveze, P. Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems. Int. J. Multiscale Comput. Eng. 2004, 2, 557–574. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Rose, L.S.; Taha, H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc. Urb. Plan. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Gao, L.; Bernhardt, M.; Schulz, K. Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol. Earth Syst. Sci. 2012, 16, 4661–4673. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Yuan, Y.; He, C.; LI, X.; Chen, Y. Land Use Pattern Adjustment under Ecological Security: Look for Secure Land Use Pattern in China. Geogr. Rev. Jpn. 2008, 77, 866–882. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Jiang, C.; Li, W.; Wei, S.; Baret, F.; Chen, J.M.; Zhu, Z. Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. J. Geophys. Res. Biogeosciences 2013, 118, 529–548. [Google Scholar] [CrossRef]
- Shewchuk, J.R. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 2014, 47, 741–778. [Google Scholar] [CrossRef]
- Lee, D.T.; Schachter, B.J. Two Algorithms for Constructing a Delaunay Triangulation. Int. J. Parallel Program. 1980, 9, 219–242. [Google Scholar] [CrossRef]
- Yang, X.C.; Zhang, Y.L.; Liu, L.S.; Zhang, W.; Ding, M.; Wang, Z. Sensitivity of surface air temperature change to land types in China. Sci. China Ser. D-Earth Sci. 2009, 52, 1207–1215. [Google Scholar] [CrossRef]
- Weatherill, N.P.; Hassan, O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int. J. Numer. Methods Eng. 2010, 37, 2005–2039. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Schaaf, C. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Oleson, K.W.; Driese, K.L.; Maslanik, J.A. The Sensitivity of a Land Surface Parameterization Scheme to the Choice of Re-motely Sensed Land-Cover Datasets. In Proceedings of the International Geoscience & Remote Sensing Symposium, Lincoln, NE, USA, 31–31 May 1996. [Google Scholar]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida Filho, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers—Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Strayer, D.L.; Beighley, R.E.; Thompson, L.C.; Brooks, S.; Nilsson, C.; Pinay, G.; Naiman, R.J. Effects of Land Cover on Stream Ecosystems: Roles of Empirical Models and Scaling Issues. Ecosystems 2003, 6, 407–423. [Google Scholar] [CrossRef]
No. | Region | Province |
---|---|---|
Ⅰ | North China | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia |
Ⅱ | Northeast China | Heilongjiang, Jilin, Liaoning |
Ⅲ | East China | Shanghai, Anhui, Jiangsu, Shandong, Zhejiang, Fujian, Jiangxi |
Ⅳ | Central China | Hubei, Hunan, Henan |
Ⅴ | South China | Guangxi, Guangdong, Hainan |
Ⅵ | Northwest China | Shanxi, Gansu, Xinjiang, Qinghai, Ningxia |
Ⅶ | Southwest China | Sichuan, Chongqing, Guizhou, Yunnan |
Ⅷ | Tibet China | Tibet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Shi, C.; Sun, S.; Gu, J.; Xu, B.; Liao, Z.; Zhang, Y.; Xu, Y. Development and Evaluation of a Real-Time Hourly One-Kilometre Gridded Multisource Fusion Air Temperature Dataset in China Based on Remote Sensing DEM. Remote Sens. 2022, 14, 2480. https://doi.org/10.3390/rs14102480
Han S, Shi C, Sun S, Gu J, Xu B, Liao Z, Zhang Y, Xu Y. Development and Evaluation of a Real-Time Hourly One-Kilometre Gridded Multisource Fusion Air Temperature Dataset in China Based on Remote Sensing DEM. Remote Sensing. 2022; 14(10):2480. https://doi.org/10.3390/rs14102480
Chicago/Turabian StyleHan, Shuai, Chunxiang Shi, Shuai Sun, Junxia Gu, Bin Xu, Zhihong Liao, Yu Zhang, and Yanqin Xu. 2022. "Development and Evaluation of a Real-Time Hourly One-Kilometre Gridded Multisource Fusion Air Temperature Dataset in China Based on Remote Sensing DEM" Remote Sensing 14, no. 10: 2480. https://doi.org/10.3390/rs14102480
APA StyleHan, S., Shi, C., Sun, S., Gu, J., Xu, B., Liao, Z., Zhang, Y., & Xu, Y. (2022). Development and Evaluation of a Real-Time Hourly One-Kilometre Gridded Multisource Fusion Air Temperature Dataset in China Based on Remote Sensing DEM. Remote Sensing, 14(10), 2480. https://doi.org/10.3390/rs14102480